Math, asked by laragautam03, 1 year ago

If n^th term of an A.P is represented by 4n - 15. Then find the sum of First 10 terms.

Answers

Answered by AnswerStation
5

\boxed{\boxed{\mathbf{70}}}

_____________________________________

Given :

n^{th} term of an A.P is represented by 4n - 15.

To Find :

Sum of First 20 terms.

\underline{\underline{\huge\mathfrak{Solution :}}}

let n = 1

Then,

a_1 = 4(1) - 15 = 4 - 15

\boxed{\mathbf{a_1 = -11}}

Similarly,

let n = 2

Then,

a_2 =  4(2) - 15 = 8 - 15[/tex]

\boxed{\mathbf{a_2 = -7}}


d = \mathsf{a_2 - a_1 = -7 -(-11) = -7 + 11 }

\boxed{\boxed{\mathbf{d = 4}}}

_____________________________________

So,

The A.P is

-11, -7, -3, 1, 5.....

_________________________________________________

Now,

Using the Formula,

\boxed{\large\mathbf{S_n = \frac{n}{2}(2a + (n-1)d)}}


\mathsf{=> \frac{10}{2}(2(-11) + (10-1)4)}

\mathsf{=> 5(-22 + 9(4))}

\mathsf{=> 5(-22 + 36)}

\mathsf{=> 5(14)}

\boxed{\mathbf{S_{10} = 70}}

_____________________________________

Similar questions