If
then what is the value of (2a+b)?
Answers
Solution :-
Given that
[√(28-10√3)+√(7+4√3)]/[√(16+6√7)] = a+b√7 ----(1)
√(28-10√3)
= √(28-2×5√3)
= √[28-2√(3×25)]
= √(28-2√75)
=√[(25+3)-2√(25×3)]
= √[(√25)²+(√3)²-2(√25)(√3)]
It is in the form of a²+b²-2ab
We know that
(a-b)² = a²-2ab+b²
Therefore, √(28-10√3) = [√(√25-√3)]²
=> √(28-10√3) = √25 -√3
=> √(28-10√3) = 5-√3 ----------(2)
and
√(7+4√3)
= √[(4+3)+2√(4×3)]
=> √[(√4)²+(√3)²+2(√4)(√3)]
It is in the form of a²+b²+2ab
We know that
(a+b)² = a²+2ab+b²
Therefore, √(7+4√3) = [√(√4+√3)]²
=> √(7+4√3) = √4+√3
=> √(7+4√3) = 2+√3 ------------(3)
and
√(16+6√7)
=√[(9+7)+2(√7×9)]
= √[(√9)²+(√7)²+2(√9)(√7)]
It is in the form of a²+b²+2ab
We know that
(a+b)² = a²+2ab+b²
Therefore, √(16+6√7) = [(√9)+√7)]²
=> √(16+6√7) = √9+√7
=> √(16+6√7) = 3+√7 ----------(4)
Now, (1) becomes
[(5-√3)+(2+√3)]/(3+√7) = a+b√7
=> (5-√3+2+√3)/(3+√7) = a+b√7
=> (5+2)/(3+√7) = a+b√7
=> 7/(3+√7) = a+b√7
We know that
The Rationalising factor of a+√b is a-√b
The Rationalising factor of 3+√7 is 3-√7
On Rationalising the denominator then
=> [7/(3+√7)]×[(3-√7)/(3-√7)] = a+b√7
=> [7(3-√7)]/[(3+√7)(3-√7)] = a+b√7
=> [7(3-√7)]/[3²-(√7)²] = a+b√7
Since, (a+b)(a-b) = a²-b²
=> [7(3-√7)]/(9-7) = a+b√7
=> 7(3-√7)/2 = a+b√7
=> (21-7√7)/2 = a+b√7
=> (21/2)-(7/2)√7 = a+b√7
=> (21/2)+(-7/2)√7 = a+b√7
On comparing both sides then
a = 21/2
b = -7/2
Now, The value of 2a+b
=> 2(21/2)+(-7/2)
=> 21-(7/2)
=> (42-7)/2
=> 35/2
Answer :-
The value of 2a+b is 35/2
Used formulae:-
→ (a+b)² = a²+2ab+b²
→ (a-b)² = a²-2ab+b²
→ (a+b)(a-b) = a²-b²
→ The Rationalising factor of a+√b = a-√b
Step-by-step explanation:
Solution :-
Given that
[√(28-10√3)+√(7+4√3)]/[√(16+6√7)] = a+b√7 ----(1)
√(28-10√3)
= √(28-2×5√3)
= √[28-2√(3×25)]
= √(28-2√75)
=√[(25+3)-2√(25×3)]
= √[(√25)²+(√3)²-2(√25)(√3)]
It is in the form of a²+b²-2ab
We know that
(a-b)² = a²-2ab+b²
Therefore, √(28-10√3) = [√(√25-√3)]²
=> √(28-10√3) = √25 -√3
=> √(28-10√3) = 5-√3 ----------(2)
and
√(7+4√3)
= √[(4+3)+2√(4×3)]
=> √[(√4)²+(√3)²+2(√4)(√3)]
It is in the form of a²+b²+2ab
We know that
(a+b)² = a²+2ab+b²
Therefore, √(7+4√3) = [√(√4+√3)]²
=> √(7+4√3) = √4+√3
=> √(7+4√3) = 2+√3 ------------(3)
and
√(16+6√7)
=√[(9+7)+2(√7×9)]
= √[(√9)²+(√7)²+2(√9)(√7)]
It is in the form of a²+b²+2ab
We know that
(a+b)² = a²+2ab+b²
Therefore, √(16+6√7) = [(√9)+√7)]²
=> √(16+6√7) = √9+√7
=> √(16+6√7) = 3+√7 ----------(4)
Now, (1) becomes
[(5-√3)+(2+√3)]/(3+√7) = a+b√7
=> (5-√3+2+√3)/(3+√7) = a+b√7
=> (5+2)/(3+√7) = a+b√7
=> 7/(3+√7) = a+b√7
We know that
The Rationalising factor of a+√b is a-√b
The Rationalising factor of 3+√7 is 3-√7
On Rationalising the denominator then
=> [7/(3+√7)]×[(3-√7)/(3-√7)] = a+b√7
=> [7(3-√7)]/[(3+√7)(3-√7)] = a+b√7
=> [7(3-√7)]/[3²-(√7)²] = a+b√7
Since, (a+b)(a-b) = a²-b²
=> [7(3-√7)]/(9-7) = a+b√7
=> 7(3-√7)/2 = a+b√7
=> (21-7√7)/2 = a+b√7
=> (21/2)-(7/2)√7 = a+b√7
=> (21/2)+(-7/2)√7 = a+b√7
On comparing both sides then
a = 21/2
b = -7/2
Now, The value of 2a+b
=> 2(21/2)+(-7/2)
=> 21-(7/2)
=> (42-7)/2
=> 35/2