Math, asked by Anonymous, 4 months ago

If
 \rm \implies \: y = A {e}^{mx}  + B {e}^{nx}
Prove that
 \rm \implies \:  \dfrac{d {}^{2}y }{d {x}^{2} }  - (m + n) \dfrac{dy}{dx}  + mny = 0

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y = a {e}^{mx}  + b {e}^{nx}

 \implies \frac{dy}{dx}   = am {e}^{mx}  + bn {e}^{nx}  \\

 \implies \: (m + n) \frac{dy}{dx}  = (m + n)(am {e}^{mx}  + bn {e}^{nx} ) \\

 \implies(m + n) \frac{dy}{dx}  = a {m}^{2}  {e}^{mx}  + mn( a{e}^{mx}  +  b{e}^{nx} ) + b {n}^{2}  {e}^{nx}  \\

 \implies(m + n) \frac{dy}{dx}  = a {m}^{2}  {e}^{mx}  + b {n}^{2} {e}^{nx}   + mny \\

Now,

 \frac{ {d}^{2}y }{d {x}^{2} }  = a {m}^{2} {e}^{mx}   + b {n}^{2}  {e}^{nx}  \\

Now,

 \frac{ {d}^{2}y }{d {x}^{2} }  - (m + n) \frac{dy}{dx}  + mny \\

 = a {m}^{2}  {e}^{mx} +  b {n}^{2}  {e}^{nx}  - a {m}^{2}  {e}^{mx}  - b {n}^{2}  {e}^{nx}  - mny + mny \\

 = 0

Answered by Asterinn
8

Given :

 \sf y = A {e}^{mx} + B {e}^{nx}

To prove :

 \sf \implies \: \dfrac{d {}^{2}y }{d {x}^{2} } - (m + n) \dfrac{dy}{dx} + mny = 0

Proof :

 \sf y = A {e}^{mx} + B {e}^{nx}

Now first we will find out dy/dx

\sf \implies  \dfrac{dy}{dx} =  \dfrac{d \bigg(A {e}^{mx} + B {e}^{nx} \bigg)}{dx}

\sf \implies  \dfrac{dy}{dx} =  \dfrac{d (A {e}^{mx} )}{dx}  + \dfrac{d(B {e}^{nx})}{dx}

By differentiating using chain rule we get :-

\sf \implies  \dfrac{dy}{dx} =  Am  \: {e}^{mx}  +Bn  \: {e}^{nx}

Now multiply m+n both sides.

\sf \implies  (m + n) \dfrac{dy}{dx} = (m + n) (Am  \: {e}^{mx}  +Bn  \: {e}^{nx})

\sf \implies  (m + n) \dfrac{dy}{dx} =  A {m}^{2}   \: {e}^{mx}  +Bn m \: {e}^{nx} + A {m}n  \: {e}^{mx}+B {n}^{2}  \: {e}^{nx}

taking out mn common :-

\sf \implies  (m + n) \dfrac{dy}{dx} =  A {m}^{2}   \: {e}^{mx}  +nm(B\: {e}^{nx} + A   \: {e}^{mx})+B {n}^{2}  \: {e}^{nx}

 \sf B\: {e}^{nx} + A   \: {e}^{mx} = y

\sf \implies  (m + n) \dfrac{dy}{dx} =  A {m}^{2}   \: {e}^{mx}  +nmy+B {n}^{2}  \: {e}^{nx}........(1)

 \rm \: Now \:  we \:  will \:  find \:  out  \:  :  \dfrac{d {}^{2}y }{d {x}^{2} }

\sf \implies  \dfrac{d {}^{2}y }{d {x}^{2} } =   \dfrac{d \bigg(Am  \: {e}^{mx}  +Bn  \: {e}^{nx} \bigg)}{dx}

\sf \implies  \dfrac{d {}^{2}y }{d {x}^{2} } =   \dfrac{d \bigg(Am  \: {e}^{mx}\bigg)}{dx}  +  \dfrac{d \bigg(Bn  \: {e}^{nx} \bigg)}{dx}

By differentiating using chain rule we get :-

\sf \implies  \dfrac{d {}^{2}y }{d {x}^{2} } =   A {m}^{2}  {e}^{mx}  +  B {n}^{2}  \: {e}^{nx} .......(2)

Now put the value of (1) and (2) in :-

\sf \implies \: \dfrac{d {}^{2}y }{d {x}^{2} } - (m + n) \dfrac{dy}{dx} + mny

\sf \implies \: A {m}^{2}  {e}^{mx}  +  B {n}^{2}  \: {e}^{nx}- ( A {m}^{2}   \: {e}^{mx}  +nmy+B {n}^{2}  \: {e}^{nx})+ mny

\sf \implies \: A {m}^{2}  {e}^{mx}  +  B {n}^{2}  \: {e}^{nx}-  A {m}^{2}   \: {e}^{mx}   - nmy - B {n}^{2}  \: {e}^{nx}+ mny

\sf \implies \: A {m}^{2}  {e}^{mx}  -  A {m}^{2}   \: {e}^{mx}+  B {n}^{2}  \: {e}^{nx} - B {n}^{2}  \: {e}^{nx}   +  mny  -  mny = 0

Hence proved

Similar questions