Math, asked by NITESH761, 6 hours ago

If  \rm \sqrt{a}x- \sqrt{b}y =b-a and  \rm \sqrt{b}x -\sqrt{a}y=0 find the value of xy.​

Answers

Answered by majethiakrisha
1

Answer:

x=√a And y=√b

Step-by-step explanation:

hope it helps.

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:\sqrt{a} \: x- \sqrt{b} \: y =b-a -  -  -  - (1)

and

\rm :\longmapsto\:\sqrt{b} \: x -\sqrt{a} \: y=0 -  -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:(\sqrt{a} +  \sqrt{b}) x- (\sqrt{b} +  \sqrt{a})y =b-a

\rm :\longmapsto\:( \sqrt{b} +  \sqrt{a})(x - y) =  {( \sqrt{b}) }^{2} -  {( \sqrt{a})}^{2}

\rm :\longmapsto\:( \sqrt{b} +  \sqrt{a})(x - y) =  ( \sqrt{b} +  \sqrt{a})( \sqrt{b} -  \sqrt{a})

\bf\implies \:x - y =  \sqrt{b} - \sqrt{a} - -  -  - (3)

Now, On Subtracting equation (2) from (1), we get

\rm :\longmapsto\:(\sqrt{a} - \sqrt{b}) x + (\sqrt{a} - \sqrt{b})y =b-a

\rm :\longmapsto\:(\sqrt{a} - \sqrt{b})(x + y) = {( \sqrt{b} )}^{2} -  {( \sqrt{a} )}^{2}

\rm :\longmapsto\:(\sqrt{a} - \sqrt{b})(x + y) = ( \sqrt{b} +  \sqrt{a})( \sqrt{b} -  \sqrt{a})

\bf\implies \:x + y =  -  \sqrt{b} -  \sqrt{a}  -  -  - (4)

Now, We know

\rm :\longmapsto\:4xy =  {(x + y)}^{2} -  {(x - y)}^{2}

On substituting the values from equation (3) and (4),

\rm :\longmapsto\:4xy =  {( \sqrt{b}  +  \sqrt{a} )}^{2} -  {( \sqrt{b}  -  \sqrt{a} )}^{2}

\rm :\longmapsto\:4xy = 4 \sqrt{a}  \sqrt{b}

\bf\implies \:xy =  \sqrt{ab}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions