Math, asked by Anonymous, 1 month ago

If \rm{x +y + z = \pi}prove the trigonometric identity \tt\blue{\cot\frac{x}{2 }   +  \cot\frac{y}{2}  +  \cot\frac{z}{2}   =  \cot \frac{x}{2}  \cot \frac{y}{2}  \cot \frac{z}{2}}

Answers

Answered by TheBrainliestUser
331

Refer the solution in attachment.

Some useful formulae:

  • cos (A + B) = (cos A•cos B - 1)/(cos A + cos B)
  • cos (A - B) = (cos A•cos B + 1)/(cos A - cos B)
  • sin (A + B) = sin A•cos B + cos A•sin B
  • sin (A - B) = sin A•cos B - cos A•sin B
  • cos (A + B) = cos A•cos B - sin A•sinB
  • cos (A - B) = cos A•cos B + sin A•sinB
  • tan (A + B) = (tan A + tan B)/(1 - tan A•tan B)
  • tan (A + B) = (tan A - tan B)/(1 + tan A•tan B)
  • sin 2A = 2 sin A• cos A
  • sin 2A = (2 tan A)/(1 + tan²A)
  • cos 2A = cos²A - sin²A
  • cos 2A = 1 - 2 sin²A
  • cos 2A = 2 cos²A - 1
  • cos 2A = (1 - tan²A)/(1 + tan²A)
  • tan 2A = (2 tan A)/(1 - tan²A)
  • sin 3A = 3 sin A - 4 sin³A
  • cos 3A = 4 cos³A - 3 cos A
  • tan 3A = (3 tan A - tan³A)/(1 - 3 tan²A)
  • cot 3A = (cot³A - 3 cot A)/(3 cot²A - 1)

Attachments:
Answered by juwairiyahimran18
4

Given ,

x + y + z = \pi \\ x + y = \pi - z \\ multiplying \:  \frac{1}{2}  \: both \: sides \\ \\   \frac{x + y}{2}  =  \frac{\pi - z}{2}  \\ \\   \frac{x}{2}  +  \frac{y}{2}  =  \frac{\pi}{2}  -  \frac{z}{2}  \\  \\ taking \: cot \: both \: sides \\  \\ cot( \frac{x}{2}  +  \frac{y}{2} ) = cot( \frac{\pi}{2}  -  \frac{z}{2} ) \\  \\    \frac{cot \frac{x}{2}  \times cot \frac{y}{2}  - 1}{cot \frac{x}{2} + cot \frac{y}{2}  }  =  \frac{cot \frac{\pi}{2}  \times cot \frac{z}{2}  + 1}{cot \frac{z}{2} - cot \frac{\pi}{2}  }  \\  \\  \frac{cot \frac{x}{2}  \times cot \frac{y}{2}  - 1}{cot \frac{x}{2}  + cot \frac{y}{2} }  =  \frac{0 + 1}{cot \frac{\pi}{2} - 0 }  \\  \\   \frac{cot \frac{x}{2} \times cot \frac{y}{2} - 1  }{cot \frac{x}{2} + cot \frac{y}{2}  }  =  \frac{1}{cot \frac{z}{2} }  \\  \\ cross \: multiplication \\  \\  cot\frac{z}{2} (cot \frac{x}{2}  \times cot \frac{y}{2}  - 1) = cot \frac{x}{2}  + cot \frac{y}{2}  \\  \\ cot \frac{x}{2}  \times cot \frac{y}{2}  \times cot \frac{z}{2}  - cot \frac{z}{2}  = cot \frac{x}{2}  + cot \frac{y}{2}  \\  \\ cot \frac{x}{2}  \times cot \frac{y}{2}  \times cot \frac{z}{2}  = cot \frac{x}{2}   + cot \frac{y}{2}  + cot \frac{z}{2}  .

hence , L.H.S. = R.H.S. (proved) !!

hopefully its helped u dear :)

Similar questions