If prove the trigonometric identity
Answers
Answered by
331
Refer the solution in attachment.
Some useful formulae:
- cos (A + B) = (cos A•cos B - 1)/(cos A + cos B)
- cos (A - B) = (cos A•cos B + 1)/(cos A - cos B)
- sin (A + B) = sin A•cos B + cos A•sin B
- sin (A - B) = sin A•cos B - cos A•sin B
- cos (A + B) = cos A•cos B - sin A•sinB
- cos (A - B) = cos A•cos B + sin A•sinB
- tan (A + B) = (tan A + tan B)/(1 - tan A•tan B)
- tan (A + B) = (tan A - tan B)/(1 + tan A•tan B)
- sin 2A = 2 sin A• cos A
- sin 2A = (2 tan A)/(1 + tan²A)
- cos 2A = cos²A - sin²A
- cos 2A = 1 - 2 sin²A
- cos 2A = 2 cos²A - 1
- cos 2A = (1 - tan²A)/(1 + tan²A)
- tan 2A = (2 tan A)/(1 - tan²A)
- sin 3A = 3 sin A - 4 sin³A
- cos 3A = 4 cos³A - 3 cos A
- tan 3A = (3 tan A - tan³A)/(1 - 3 tan²A)
- cot 3A = (cot³A - 3 cot A)/(3 cot²A - 1)
Attachments:
Answered by
4
Given ,
hence , L.H.S. = R.H.S. (proved) !!
hopefully its helped u dear :)
Similar questions