If denotes the sum of the first n terms of an A.P., prove that = 3( - )
Answers
Answered by
1
Answer with Step-by-step explanation:
Given :
Sn denotes the sum of the first n terms of an A.P
We have to prove that : S30 = 3(S20 - S10)
By using the formula ,Sum of nth terms , Sn = n/2 [2a + (n – 1) d]
L.H.S :
S30 = (30 / 2) [ 2a + ( 30 -1)d ]
S30 = 15[2a + 29d]
S30 = 30a + 435d …………(1)
R.H.S :
S20 - S10 = (20/2) [ 2a + ( 20 -1)d ] - (10/2) [ 2a + ( 10 -1)d ]
S20 - S10 = 10 [ 2a + ( 20 -1)d ] - 5 [ 2a + (10 -1)d ]
S20 - S10 = 10 [ 2a + 19d ] - 5 [ 2a + 9d ]
S20 - S10 = 20a + 190d - 10a - 45d
S20 - S10 = 10a + 190d - 45d
S20 - S10 = 10a + 145d
3(S20 - S10 ) = 3(10a + 145d )
3(S20 - S10 ) = 3 x 5(2a + 29d )
3(S20 - S10 ) = 15(2a + 29d )
3(S20 - S10 ) = 30a + 435d ………(2)
From eq 1 & 2 ,
L.H.S = R.H.S
S30 = 3(S20 - S10 )
Hence Proved….
HOPE THIS ANSWER WILL HELP YOU….
Answered by
1
Answer
L.H.S.
= 15[2a + 19d]
= 30a + 435d
R.H.S.
= 3[20a + 190d - 10a - 45d]
= 30a + 435d
L.H.S. = R.H.S.
Hence Proved!
Similar questions
Biology,
6 months ago
Math,
6 months ago
Science,
1 year ago
Accountancy,
1 year ago
Math,
1 year ago