Math, asked by Nandithas, 1 year ago

if
 \sec( \alpha )  +  \tan( \alpha )  = p
Then find value of
 \cosec \alpha

Answers

Answered by aakashvishwakarma58
6

sec \alpha  + tan \alpha  = p
 \frac{1}{cos \alpha }  +  \frac{sin \alpha }{ cos \alpha }  = p
 \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }  = p
1 +  \sin( \alpha )  = p \cos( \alpha )
 \sin( \alpha )  = p \cos( \alpha ) - 1
 \frac{1}{ \csc( \alpha ) }  = p \cos( \alpha  )  - 1
 \csc( \alpha )  =  \frac{1}{p \cos( \alpha )  - 1}
i hope its help for you

plz mark me in brainlist answer






Radhe Radhe
Answered by Anonymous
0

Answer:

Given :

sec A + tan A = p

I am replacing p by ' k '

sec A + tan A = k

We know :

sec A = H / B   & tan A = P / B

H / B + P / B =  k / 1

H + P / B =  k / 1

So , B = 1

H + P = k

P = k - H

From pythagoras theorem :

H² = P² + B²

H² = ( H - k )² + 1

H² = H² + k² - 2 H k + 1

2 H k = k² + 1

H = k² + 1 / 2 k

P = k - H

P = k² - 1 / 2 k

Now write k = p we have :

Base = 1

Perpendicular P = P² - 1 / 2 P

Hypotenuse H = P² + 1 / 2 P

Value of cosec A = H / P

cosec A =  P² + 1 / 2 P / P² - 1 / 2 P

cosec A = P² + 1 / P² - 1

Therefore , we got value .

Similar questions