Math, asked by BrainlySunShine, 10 months ago

If

sec \:  + tan \:  = p \: \\  \\ then \: prove \: that \:  \\  \\   \frac{ {p}^{2}  - 1}{ {p}^{2}  + 1}  = sin \:
No spam​

Answers

Answered by pranay0144
4

Answer:

Hey mate i will help u

Refers with attachments

Attachments:
Answered by Anonymous
21

SOLUTION:-

Given:

sec \theta \:  + tan \theta = p

To prove:

sin \theta =  \frac{ {p}^{2}  - 1}{ {p}^{2} + 1 }

Proof:

 \frac{ {p}^{2}  - 1}{ {p}^{2} + 1 }  \\  \\  =  >  \frac{(sec \theta + tan \theta)2 - 1}{(sec \theta + tan \theta)2 + 1} \\  \\  =  >  \frac{sec2 \theta + tan2 \theta + 2sec \theta.tan \theta - 1}{sec2 \theta + tan 2\theta + 2sec \theta.tan \theta + 1}  \\  \\  =  >  \frac{(sec2 \theta - 1) + tan2 \theta - 2sec \theta.tan \theta}{(tan2 \theta + 1) + sec2 \theta + 2sec \theta.tan \theta}  \\  \\  =  >  \frac{tan2 \theta + tan2 \theta + 2sec \theta.tan \theta}{sec2 \theta + sec2 \theta + 2sec \theta.tan \theta}  \\  \\  =  >  \frac{2tan \theta(tan \theta + sec \theta)}{2sec \theta(sec \theta + tan \theta)}  \\  \\  =  >  \frac{tan \theta}{sec \theta}  \\  \\  =  >  \frac{sin \theta}{cos \theta \times cos \theta}  \\  \\  =  > sin \theta

R.H.S

[Proved]

Hope it helps ☺️

Similar questions