Math, asked by Anonymous, 1 month ago

If
 \sec \theta \:  +  \tan \theta =  \bf \: x
Then prove that
 \sf \: sin \theta  = \dfrac{ {x}^{2} - 1 }{ {x}^{2}  + 1}
 \clubsuit No copy
 \spade No spam or pilgrims.​

Answers

Answered by Anonymous
30

See this Attachment.

here is your answer.

Attachments:
Answered by prince5132
76

GIVEN :-

  • Sec∅ + tan∅ = x.

TO PROVE :-

  • Sin∅ = (x² - )/(x² + 1).

SOLUTION :-

Taking the RHS part,

 \implies \sf \:  \dfrac{x ^{2} - 1 }{x ^{2} + 1 }  \\

Substitute the value of x,

 \implies \sf \:  \dfrac{( \sec \theta +  \tan \theta) ^{2}  - 1 }{ ( \sec \theta +  \tan \theta) ^{2} + 1} \\

\implies \sf \:  \dfrac{ \sec ^{2} ( \theta)  +  \tan ^{2} ( \theta)  + 2 \sec( \theta)  \tan(theta) - 1 }{\sec ^{2} ( \theta)  +  \tan ^{2} ( \theta)  + 2 \sec( \theta)  \tan(theta)  +  1 }  \\

Now as we know that , sec²A - 1 = tan²A.

 \implies \sf \:  \dfrac{ \tan ^{2} ( \theta)  +  \tan ^{2} ( \theta) + 2 \sec( \theta)  \tan( \theta)  }{  \sec ^{2} ( \theta)  +  \sec ^{2} ( \theta)  + 2 \sec( \theta)  \tan( \theta)}  \\

\implies \sf \:  \dfrac{2 \tan ^{2} ( \theta)  +  2 \sec( \theta)  \tan( \theta)}{2 \sec ^{2}  ( \theta) +  2 \sec( \theta)  \tan( \theta)}  \\

Taking 2tanA as a common in numerator and 2secA in denominator,

\implies \sf \: \dfrac{2 \tan( \theta)  \cancel{\bigg( \tan( \theta)   +  \sec( \theta) \bigg)} }{2 \sec( \theta) \cancel{ \bigg( \tan( \theta)   +  \sec( \theta) \bigg)}} \\

\implies \sf \: \dfrac{2 \tan( \theta)} {2 \sec( \theta) } \\

\implies \sf \: \dfrac{ \tan( \theta) }{ \sec( \theta) } \\

As we know that , tanA = sinA/cosA and secA = 1/cosA,

\implies \sf \: \dfrac{ \dfrac{ \sin( \theta) }{ \cos( \theta) } }{ \dfrac{1}{ \cos( \theta) } }  \\

\implies \sf \:  \dfrac{\sin( \theta) }{ \cos( \theta) } \times  \cos( \theta)  \\

\implies \sf \:  \sin( \theta)

Hence proved.


Anonymous: Superb -ᄒᴥᄒ-
prince5132: thanks ^_^
Similar questions