Math, asked by AestheticSky, 1 month ago

if \sf 4n\apha=\pi

then find the value of :-

  \\ \sf  \cot\alpha. \cot 2\alpha. \cot3 \alpha... \cot((2n - 1) \alpha ) \\
Need full explanation! ​

Answers

Answered by Anonymous
190

Given-

\sf 4n\alpha=\pi

To Find-

Value of -

  \sf \cot\alpha. \cot 2\alpha. \cot3 \alpha... \cot((2n - 1) \alpha )

Solution-

\sf 4n\alpha=\pi

\sf n=\frac{π}{4\alpha}

»Taking general term

cot(2n-1)\alpha\impliescot(\frac{\cancel2π}{\cancel4\alpha}-1)\alpha

\impliescot(\frac{π}{2}-\alpha)

\red\impliestan\alpha

and,

cot(2n-2)\alpha\impliescot(\frac{\cancel2π}{\cancel4\alpha}-2)\alpha

\impliescot(\frac{π}{2}-2\alpha)

\red\impliestan2\alpha

Also,

cot(2n-3)\alpha\impliescot(\frac{\cancel2π}{\cancel4\alpha}-3)\alpha

\impliescot(\frac{π}{2}-3\alpha)

\red\impliestan3\alpha

and it goes on. . .

So, cot\alpha.cot2\alpha.cot3\alpha. . . .cot(2n−3)\alpha.cot(2n−2)\alpha.cot(2n−1)\alpha

\purple\impliescot\alpha.cot2\alpha.cot3\alpha. . . . .tan3\alpha.tan2\alpha.tan\alpha

\purple\implies(cot\alpha.tan\alpha)(cot2\alpha.tan2\alpha)(cot3\alpha.tan3\alpha). . . . .

\purple\implies1.1.1 . . . . .

\red\implies\huge1

Answered by SparklingBoy
260

Given :

\sf 4n\alpha=\pi

To Find :

Value of  \\ \sf \cot\alpha. \cot 2\alpha. \cot3 \alpha... \cot\{(2n - 1) \alpha \} \\

Solution :

We Have ,

 4n \alpha  =  \pi \\

\purple{ \large :\longmapsto  \underline {\boxed{{\pmb{ n =  \frac{\pi}{4 \alpha } }} }}} \\

❒ Taking some last terms of the expression which we have to find :

\cot \{(2n - 1)  \alpha  \} \\

Putting Value of n :

 =  \cot \bigg \{ \bigg(2 \times  \dfrac{\pi}{4  \alpha }   - 1 \bigg)    \alpha \bigg \} \\

 =  \cot \bigg( \dfrac{ \frac{\pi}{2} -  \alpha}{ \alpha }  \times  \alpha  \bigg )  \\

 =  \cot \bigg( \dfrac{ \pi}{2} -  \alpha  \bigg )  \\

 =  \tan \alpha

Similarly :

 \cot \{(2n - 2)   \alpha \} \\

Putting Value of n :

 =  \cot  \bigg \{\bigg( 2 \times  \dfrac{\pi}{4 \alpha } \bigg) \alpha  \bigg \} \\

 =  \cot \bigg( \frac{\pi}{2} -  \alpha  \bigg )  \\

 =  \tan2 \alpha

Hence,

\cot\alpha. \cot 2\alpha. \cot3 \alpha... \cot\{(2n - 1) \alpha \} \\

 = \cot\alpha. \cot 2\alpha. \cot3 \alpha\: .  \: .  \: .  \:  \tan3 \alpha .\tan2 \alpha .  \tan \alpha \} \\

 =  (\cot \alpha  \tan .\alpha ). (\cot2 \alpha  \tan .2\alpha ). (\cot 3\alpha  \tan .3\alpha ) \: . \: . \: . \:  \\

 = 1.1.1 \: . \: . \: . \:  \\

 \huge\pink{ \pmb{\underline{\frak{{=1}}}}}


Anonymous: Grêåt!
Similar questions