Math, asked by Anonymous, 4 months ago

If -
 \sf a \:  =  \dfrac{3 \:  -   \sqrt{5} }{3 \:  +   \sqrt{5} } \sf \:  \:  \:  \: and \: \: \:  \:   \sf b \:  =  \:  \dfrac{3 \:   +   \sqrt{5} }{3 \:  -  \sqrt{5} }
Then find -
 \sf \:  {a}^{2}  \:  \:  -  \:  \:  {b}^{2}
Note -
Want full steps !
No Irrelevant answers please ! ​

Answers

Answered by Anonymous
14

Step-by-step explanation:

\huge\tt\red{Refer\:Attachment}

\huge\sf\underline\green{Mark\:as\:Brainliest!}

Attachments:
Answered by IdyllicAurora
39

Concept :-

Here the concept of Algebraic Identities has been used. We see that we are given a equation where we have to find the final value after applying some values. Firstly we can find the values of a and b separately and then apply them in the final expression to find their value.

Let's do it !!

___________________________________________

Formula Used :-

\;\boxed{\sf{\pink{(a\:+\:b)^{2}\;=\;\bf{a^{2}\;+\;b^{2}\;+\;2ab}}}}

\;\boxed{\sf{\pink{(a\:-\:b)^{2}\;=\;\bf{a^{2}\;+\;b^{2}\;-\;2ab}}}}

___________________________________________

Solution :-

Given,

\;\sf{\mapsto\;\;\green{a\;=\;\bf{\dfrac{3\:-\:\sqrt{5}}{3\:+\:\sqrt{5}}}}}

\;\sf{\mapsto\;\;\orange{b\;=\;\bf{\dfrac{3\:+\:\sqrt{5}}{3\:-\:\sqrt{5}}}}}

___________________________________________

~ For the value of a² and b² separately ::

For value of a² :

We know that,

\;\sf{\rightarrow\;\;a\;=\;\bf{\dfrac{3\:-\:\sqrt{5}}{3\:+\:\sqrt{5}}}}

Now squaring both sides, we get

\;\sf{\rightarrow\;\;(a)^{2}\;=\;\bf{\bigg(\dfrac{3\:-\:\sqrt{5}}{3\:+\:\sqrt{5}}\bigg)^{2}}}

\;\sf{\rightarrow\;\;(a)^{2}\;=\;\bf{\dfrac{(3\:-\:\sqrt{5})^{2}}{(3\:+\:\sqrt{5})^{2}}}}

From identities we know that,

\;\tt{\leadsto\;\;(a\:+\:b)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;2ab}

\;\tt{\leadsto\;\;(a\:-\:b)^{2}\;=\;a^{2}\;+\;b^{2}\;-\;2ab}

  • Here a = 3 and b = 5

By applying these identities we get,

\;\sf{\rightarrow\;\;(a)^{2}\;=\;\bf{\dfrac{(3)^{2}\:+\:(\sqrt{5})^{2}\:-\:2(3)(\sqrt{5})}{(3)^{2}\:+\:(\sqrt{5})^{2}\:+\:2(3)(\sqrt{5})}}}

\;\sf{\rightarrow\;\;(a)^{2}\;=\;\bf{\dfrac{9\:+\:5\:-\:6(\sqrt{5})}{9\:+\:5\:+\:6(\sqrt{5})}}}

\;\sf{\rightarrow\;\;\blue{a^{2}\;=\;\bf{\dfrac{14\:-\:6(\sqrt{5})}{14\:+\:6(\sqrt{5})}}}}

For value of b² :

Similarly like a², we can get for b² as

\;\sf{\rightarrow\;\;b\;=\;\bf{\dfrac{3\:+\:\sqrt{5}}{3\:-\:\sqrt{5}}}}

Now squaring both sides, we get

\;\sf{\rightarrow\;\;(b)^{2}\;=\;\bf{\bigg(\dfrac{3\:+\:\sqrt{5}}{3\:-\:\sqrt{5}}\bigg)^{2}}}

\;\sf{\rightarrow\;\;(b)^{2}\;=\;\bf{\dfrac{(3\:+\:\sqrt{5})^{2}}{(3\:-\:\sqrt{5})^{2}}}}

From identities, we know that

\;\tt{\leadsto\;\;(a\:+\:b)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;2ab}

\;\tt{\leadsto\;\;(a\:-\:b)^{2}\;=\;a^{2}\;+\;b^{2}\;-\;2ab}

  • Here a = 3 and b = 5

By applying identities, we get

\;\sf{\rightarrow\;\;(b)^{2}\;=\;\bf{\dfrac{(3)^{2}\:+\:(\sqrt{5})^{2}\:+\:2(3)(\sqrt{5})}{(3)^{2}\:+\:(\sqrt{5})^{2}\:-\:2(3)(\sqrt{5})}}}

\;\sf{\rightarrow\;\;(b)^{2}\;=\;\bf{\dfrac{9\:+\:5\:+\:6(\sqrt{5})}{9\:+\:5\:-\:6(\sqrt{5})}}}

\;\sf{\rightarrow\;\;\red{b^{2}\;=\;\bf{\dfrac{14\:+\:6(\sqrt{5})}{14\:-\:6(\sqrt{5})}}}}

___________________________________________

~ For the value of (a² - b²) ::

We can directly apply the values as,

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\bigg(\dfrac{14\:-\:6(\sqrt{5})}{14\:+\:6(\sqrt{5})}\bigg)\;-\;\bigg(\dfrac{14\:+\:6(\sqrt{5})}{14\:-\:6(\sqrt{5})}\bigg)}}

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\dfrac{14\:-\:6\sqrt{5}}{14\:+\:6\sqrt{5}}\;-\;\dfrac{14\:+\:6\sqrt{5}}{14\:-\:6\sqrt{5}}}}

Taking LCM of both the fractions, we get

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\dfrac{(14\:-\:6\sqrt{5})(14\:-\:6\sqrt{5})\;-\;(14\:+\:6\sqrt{5})(14\:+\:6\sqrt{5})}{(14\:+\:6\sqrt{5})(14\:-\:6\sqrt{5})}}}

We know that, (a + b)(a - b) = a² - b²

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\dfrac{(14\:-\:6\sqrt{5})^{2}\;-\;(14\:+\:6\sqrt{5})^{2}}{(14)^{2}\:-\:(6\sqrt{5})^{2}}}}

We know that,

\;\tt{\leadsto\;\;(a\:+\:b)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;2ab}

\;\tt{\leadsto\;\;(a\:-\:b)^{2}\;=\;a^{2}\;+\;b^{2}\;-\;2ab}

By applying these here, we get

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\dfrac{(196\:+\:36(5)\:-\:2(6\sqrt{5})(14))\;-\;(196\:+\:36(5)\:+\:2(6\sqrt{5})(14))}{196\:-\:36(5)}}}

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\dfrac{(196\:+\:180\:-\:168\sqrt{5})\;-\;(196\:+\:180\:+\:168\sqrt{5})}{196\:-\:180}}}

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\dfrac{196\:+\:180\:-\:168\sqrt{5}\;-\;196\:-\:180\:-\:168\sqrt{5}}{16}}}

Cancelling the unlike terms, we get

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\dfrac{-\:168\sqrt{5}\:-\:168\sqrt{5}}{16}}}

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\dfrac{2(-\:168\sqrt{5})}{16}}}

\;\sf{\Longrightarrow\;\;a^{2}\:-\:b^{2}\;=\;\bf{\dfrac{-\:168\sqrt{5}}{8}}}

\;\bf{\Longrightarrow\;\;\pink{a^{2}\:-\:b^{2}\;=\;\bf{-\:21\sqrt{5}}}}

This is the required answer.

\;\underline{\boxed{\tt{Required\;\;answer\;=\;\bf{\purple{-21\sqrt{5}}}}}}

___________________________________________

More to know :-

\;\sf{\leadsto\;\;(a\:+\:b)^{3}\;=\;a^{3}\:+\:b^{3}\:+\:3ab(a\:+\:b)}

\;\sf{\leadsto\;\;(a\:-b)^{3}\:=\;a^{3}\:-\:b^{3}\:-\:3ab(a\:-\:b)}

Similar questions