Math, asked by Anonymous, 1 month ago

If
\sf A \left[\begin{array}{ccc}1&4\\ 1&-3\\\end{array}\right] and \; B\left[\begin{array}{ccc}1&2\\-1 &-1\\\end{array}\right]
then find
(A + B)²
A² + B²
Note
Please don't spam.

Answers

Answered by NewGeneEinstein
6

Step-by-step explanation:

\sf A=\left[\begin{array}{ccc}1&4 \\ 1&-3 \end{array} \right]

\\ \sf{:}\dashrightarrow A=1(-3)-1(4)

\\ \sf{:}\dashrightarrow A=-3-4

\\ \sf{:}\dashrightarrow A=-7

______________________

\sf B=\left[\begin{array}{ccc}1& 2\\ -1& -1 \end{array} \right]

\\ \sf{:}\dashrightarrow  B=1(-1)-2(-1)

\\ \sf{:}\dashrightarrow B=-1-(-2)

\\ \sf{:}\dashrightarrow B=-1+2

\\ \sf{:}\dashrightarrow B=1

now,

\\ \sf{:}\dashrightarrow (A+B)^2

\\ \sf{:}\dashrightarrow A^2+2AB+B^2

\\ \sf{:}\dashrightarrow (-7)^2+2(-7)(1)+(1)^2

\\ \sf{:}\dashrightarrow 49+(-14)+1

\\ \sf{:}\dashrightarrow 49-14+1

\\ \sf{:}\dashrightarrow 35+1

\\ \sf{:}\dashrightarrow 36

Again

\\ \sf{:}\dashrightarrow A^2+B^2

\\ \sf{:}\dashrightarrow (A+B)^2-2AB

\\ \sf{:}\dashrightarrow 36-14

\\ \sf{:}\dashrightarrow 22

Similar questions