Math, asked by Ataraxia, 2 months ago

If \sf\displaystyle \sqrt{r}=ae^{\displaystyle\theta cot \alpha } where \sf \theta and \sf\alpha are real numbers, then \sf\displaystyle \dfrac{d^{2}r}{d \theta^{2}}-4rCot^{2} \alpha is ?

Answers

Answered by Anonymous
41

Given,

\displaystyle  \sf \: \sqrt{r}=ae^{\displaystyle\theta cot \alpha }

Differentiating w.r.t theta (Notice that the variables under operation r and ∅ are in parametric form),

 \implies \sf \:  \dfrac{d( \sqrt{r} )}{d \theta}  =  \dfrac{d(ae {}^{ \theta \:  \cot( \alpha ) }) }{d \theta} \\  \\  \implies \sf \:   \dfrac{d( \sqrt{r}) }{dr} \dfrac{dr}{d \theta} = ae {}^{ \theta \:  \cot( \alpha ) } \times  \dfrac{ d(\theta \:  \cot( \alpha )) }{d \theta}  \\  \\  \implies \sf \:  \dfrac{1}{2 \sqrt{r} } \dfrac{dr}{d \theta} = a \cot( \alpha ) e {}^{ \theta \:  \cot( \alpha ) }  \\  \\  \implies \sf \: \dfrac{dr}{d \theta} = \cot( \alpha ) \bigg \{ ae {}^{ \theta \:  \cot( \alpha ) } \bigg \} \times 2 \sqrt{r}  \\  \\ \implies \sf \: \dfrac{dr}{d \theta} = \cot( \alpha ) \times  \sqrt{r}  \times 2 \sqrt{r}  \\  \\ \implies \sf \: \dfrac{dr}{d \theta} =2r \cot( \alpha )  -  -  -  -  -  -  - (1)

Differentiating w.r.t theta again,

 \implies \sf \:  \dfrac{ {d}^{2}r }{ {d \theta}^{2} }  = 2 \cot( \alpha )  \dfrac{dr}{d \theta}  \\  \\   \implies \sf \:  \dfrac{ {d}^{2}r }{ {d \theta}^{2} }  =4r \cot {}^{2} ( \alpha ) \ \ \ \ \ \ \ |Using (1)| \\  \\ \implies \boxed{ \boxed{ \sf \:  \dfrac{ {d}^{2}r }{ {d \theta}^{2} }   - 4r \cot {}^{2} ( \alpha )  = 0}}


Ataraxia: Thank uh sooo much!!! <3
Anonymous: Supercalifragilisticexpialidocious ! :O
Asterinn: Awesome!!!!
Atαrαh: Awesomeeeee! :3
Answered by nirman95
15

Given:

 \sf\sqrt{r}=ae^{\displaystyle\theta cot \alpha }

To find:

 \sf\dfrac{d^{2}r}{d \theta^{2}}-4rCot^{2} \alpha = ?

Calculation:

  • First, let's differentiate w.r.t \theta and then apply Chain Rule.

 \rm \:  \sqrt{r}  = a {e}^{ \theta \cot( \alpha ) }

 \rm  \implies\:   \dfrac{d(\sqrt{r})}{d \theta}  =  \dfrac{d \bigg(a {e}^{ \theta \cot( \alpha ) }  \bigg)}{d \theta}

 \rm  \implies\:   \dfrac{d(\sqrt{r})}{d r}  \times  \dfrac{dr}{d \theta}  = a {e}^{ \theta \cot( \alpha ) }  \times  \dfrac{d \bigg \{ \theta \cot( \alpha )  \bigg \}}{d \theta}

 \rm  \implies\:    \dfrac{1}{2 \sqrt{r} } \times  \dfrac{dr}{d \theta}  = a {e}^{ \theta \cot( \alpha ) }  \times   \cot( \alpha )

 \rm  \implies\:  \dfrac{dr}{d \theta}  = a {e}^{ \theta \cot( \alpha ) }  \times   \cot( \alpha )  \times 2 \sqrt{r}

 \rm  \implies\:  \dfrac{dr}{d \theta}  =  \sqrt{r}  \times   \cot( \alpha )  \times 2 \sqrt{r}

 \rm  \implies\:  \dfrac{dr}{d \theta}  = 2r   \cot( \alpha )

  • Second order differentiation w.r.t \theta.

 \rm  \implies\:  \dfrac{ {d}^{2} r}{d {\theta}^{2} }  = 2 \cot( \alpha )   \times  \dfrac{dr}{d \theta}

 \rm  \implies\:  \dfrac{ {d}^{2} r}{d {\theta}^{2} }  = 2 \cot( \alpha )   \times 2r \cot( \alpha )

 \rm  \implies\:  \dfrac{ {d}^{2} r}{d {\theta}^{2} }  =4r {\cot}^{2} ( \alpha )

 \rm  \implies\:  \dfrac{ {d}^{2} r}{d {\theta}^{2} }   - 4r {\cot}^{2} ( \alpha )  = 0

So, final answer is :

 \boxed{ \bf\:  \dfrac{ {d}^{2} r}{d {\theta}^{2} }   - 4r {\cot}^{2} ( \alpha )  = 0}


Ataraxia: Thanks a lot! ^^"
nirman95: :-)
Similar questions