Math, asked by Anonymous, 9 months ago

If \sf{If \ x=2^{\frac{1}{3}}-2^{\frac{-1}{3}}}
Prove that: 2x³+6x=3.​

Answers

Answered by Rajshuklakld
9

Chotu here is ur answer

x =  {2}^{ \frac{1}{3} }  -  {2}^{ \frac{1}{3} }  \\ cube \: on \: both \: side \\  {x}^{3}  =( { {2}^{ \frac{1}{3}  } -  {2}^{ \frac{ - 1}{3} }  )}^{3}  \\  {x}^{3}  =   { {2}^{ (\frac{1}{3}) } }^{3}  -  { {2}^{ (\frac{ - 1}{3}) } }^{3}  - 3 \times  {2}^{ \frac{1}{3}  }  \times  {2}^{ \frac{ - 1}{3} } ( {2}^{ \frac{ 1}{3}  }  -  {2}^{ \frac{1}{3} } ) \\  {x}^{3}   = 2 -  \frac{1}{2}  - 3x \\  {x}^{3 }  + 3x =  \frac{3}{2}  \\ 2 {x}^{3}  + 6x = 3 \\ hence \: proved

Similar questions