Math, asked by Arceus02, 8 months ago

If \sf{log_{8} {a}^{3}} + \sf{log_{4} {b}^{2}} = 5, then
(A) the last digit of ab + 1 is even
(B) the last digit of ab is odd
(C) ab + 17 is a perfect square
(D) ab + 1 is a perfect cube

Single option correct

[Ans. (C).] Explanation needed.​

Answers

Answered by Anonymous
36

Solutìon :

(C) ab + 17 is a perfect square

Explanatìon :

We have ,

\sf\log_{8}a^3+\log_{4}b^2=5

Use property:

\sf\blue{\log(a)^n=n\log(a)} then ,

\sf\implies3\log_{8}a+2\log_{4}b=5

\sf\implies3\log_{2^3}a+2\log_{2^2}b=5

Use property :

\sf\green{\log_{a{}^{n}}x=\dfrac{1}{n}\times\log_{a}x} then ,

\sf\implies3\times\dfrac{1}{3}\log_2a+2\times\dfrac{1}{2}\log_2b=5

\sf\implies\dfrac{3}{3}\log_2a+\dfrac{2}{2}\log_2b=5

\sf\implies\log_2a+\log_2b=5

Use property :

\sf\pink{\log(a)+\log(b)=\log(ab)} then

\sf\implies\log_2(ab)=5

\sf\implies2^5=ab

\sf\implies\:ab=32...(1)

Case : 1

When 1 is added to equation (1)

\sf\:ab+1=32+1

\sf\:ab+1=33

the last digit of ab + 1 is odd and it's also not a perfect cube , hence a) & d) options are wrong

Case :2

\sf\:ab+1=32

the last digit of ab + 1 is even,

Hence , b ) option is wrong

Case :3

Add 17 in Equation (1)

\sf\:ab+17=32+17

\sf\:ab+17=49

\sf\:ab+17=7^2

ab +17 is a perfect square of 7

Hence , option c ) is correct

___________________

Rules of Logarithm :

• Basic rules

\sf\:1)\log(a) + \log(b) = \log(ab)

\sf\:2)\log( \frac{a}{b} ) = \log(a) - \log(b)

\sf\:3)\log(a) {}^{n} = nlog(a)

\sf\:4)\log_{a}(a) = 1

\sf\:5)\log_{a}(1)=0

\sf\:6)\log_{a{}^{n}}x=\dfrac{1}{n}\times\log_{a}x

\sf\:7)\log_{a{}^{n}}x{}^{m}=\dfrac{m}{n}\times\log_{a}

•Base changing rule

\sf\:\log_{a}x = \dfrac{\log_{b}x}{\log_{b}a}

Answered by kohilak80
2

Answer:

When 1 is added to equation (1)

ab+1=32+1ab+1=32+1

ab+1=33ab+1=33

the last digit of ab + 1 is odd and it's also not a perfect cube , hence a) & d) options are wrong

Similar questions