Math, asked by NITESH761, 1 month ago

If  \sf tanθ = \dfrac{x\: sinΦ}{1-x \:cosΦ} and  tanΦ=\dfrac{y \:sinθ}{1-y \:cos θ} , find  \dfrac{x}{y}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:tan\theta  = \dfrac{xsin\phi }{1 - xcos\phi }

and

\rm :\longmapsto\:tan\phi  = \dfrac{ysin\theta }{1 - ycos\theta }

So, Consider

 \red{\rm :\longmapsto\:tan\theta  = \dfrac{xsin\phi }{1 - xcos\phi }}

\red{\rm :\longmapsto\:tan\theta (1 - xcos\phi ) = xsin\theta }

\red{\rm :\longmapsto\:tan\theta  - x \: tan\theta  \: cos\phi = xsin\theta }

\red{\rm :\longmapsto\:tan\theta  \:  =  x \: tan\theta  \: cos\phi +  xsin\theta }

\red{\rm :\longmapsto\:tan\theta  \:  =  x \: (tan\theta  \: cos\phi + sin\theta)}

\red{\rm :\longmapsto\:tan\theta  \:  =  x \: \bigg(\dfrac{sin\theta }{cos\theta }   \: cos\phi + sin\theta\bigg)}

\red{\rm :\longmapsto\:\dfrac{sin\theta }{cos\theta }   \:  =  x \: \bigg(\dfrac{sin\theta \: cos\phi  + sin\phi  \: cos\theta  }{cos\theta }  \bigg)}

We know

\boxed{ \tt{ \: sinx \: cosy \:  +  \: siny \: cosx \:  =  \: sin(x + y) \: }}

Thus,

\red{\rm :\longmapsto\:sin\theta  = x \: sin(\theta  + \phi )}

 \red{\rm \implies\:x = \dfrac{sin\theta }{sin(\theta  + \phi )}  -  -  - (1)}

Now, Consider

 \purple{\rm :\longmapsto\:tan\phi  = \dfrac{ysin\theta }{1 - ycos\theta } }

\purple{\rm :\longmapsto\:tan\phi (1 - ycos\theta ) = ysin\theta }

\purple{\rm :\longmapsto\:tan\phi  - y \: tan\phi  \: cos\theta  = ysin\theta }

\purple{\rm :\longmapsto\:tan\phi  =  y \: tan\phi  \: cos\theta + ysin\theta }

\purple{\rm :\longmapsto\:tan\phi  =  y( \: tan\phi  \: cos\theta + sin\theta )}

\purple{\rm :\longmapsto\:tan\phi  =  y\bigg( \: \dfrac{sin\phi }{cos\phi }   \: cos\theta + sin\theta \bigg)}

\purple{\rm :\longmapsto\:tan\phi  =  y\bigg( \: \dfrac{sin\phi cos\theta  + sin\theta cos\phi }{cos\phi }    \bigg)}

\purple{\rm :\longmapsto\:\dfrac{sin\phi }{cos\phi }   =  y\bigg( \: \dfrac{sin(\theta  + \phi ) }{cos\phi }    \bigg)}

 \purple{\rm \implies\:y = \dfrac{sin\phi }{sin(\theta  + \phi )} \:  -  -  - (2)}

So, On dividing equation (1) by (2), we get

 \blue{\rm \implies\:\boxed{ \bf{ \:  \frac{x}{y} =  \frac{sin\theta }{sin\phi } \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{ \tt{ \: sinx \: cosy \:   -   \: siny \: cosx \:  =  \: sin(x  -  y) \: }}

\boxed{ \tt{ \: cosx \: cosy \:   -   \: siny \: sinx \:  =  \: cos(x + y) \: }}

\boxed{ \tt{ \: cosx \: cosy \: +  \: siny \: sinx \:  =  \: cos(x - y) \: }}

\boxed{ \tt{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany } \: }}

\boxed{ \tt{ \: tan(x  y) =  \frac{tanx  -  tany}{1 + tanx \: tany } \: }}

\boxed{ \tt{ \:  {sin}^{2}x -  {sin}^{2}y = sin(x + y)sin(x - y) \: }}

\boxed{ \tt{ \:  {cos}^{2}x -  {sin}^{2}y = cos(x + y) \: cos(x - y) \: }}

Similar questions