Math, asked by NITESH761, 1 month ago

if  \sf tan\: \theta =\dfrac{a}{b}
prove that,
\tt \bigg( \dfrac{sin^2 \: \theta - cos^2\: \theta}{sin^2 \: \theta + cos^2\: \theta} \bigg) = \bigg( \dfrac{a^2-b^2}{a^2+b^2} \bigg)

Answers

Answered by kinzal
3

Here is your answer ❤️⏬

We already learnt that,

 \sf tan \theta = \frac{Sin \theta }{Cos \theta} \\

So, According to the question we can say that,

 \sf tan \theta = \frac{a}{b} = \frac{Sin \theta}{Cos \theta } \\

Hence,  \sf Sin \theta = a and  \sf Cos \theta = b

Now, we have to put these values in \sf \bigg( \frac{sin^2 \theta - cos^2 \theta}{sin^2  \theta + cos^2 \theta} \bigg) \\

\sf \bigg( \frac{sin^2 \theta - cos^2 \theta}{sin^2 \: \theta + cos^2\: \theta} \bigg) \\

\sf \bigg( \frac{(a)^{2} - (b)^{2}}{(a)^{2} + (b)^{2}} \bigg) \\

Hence It's Proof

\sf \bigg( \frac{a^{2} - b^{2}}{a^{2} + b^{2}} \bigg) \\

More information about Trigonometry :

  •  \sf Tan \theta = \frac{Sin \theta }{Cos \theta } \\

  •  \sf Cot \theta = \frac{1}{Tan \theta } = \frac{Cos \theta }{Sin \theta} \\

  •  \sf Sin² \theta + Cos² \theta = 1

  •  \sf Sec² \theta - Tan² \theta = 1

  •  \sf cosec² \theta = 1 + cot² \theta

I hope it helps you ❤️✔️

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:tan \theta \:  =  \: \dfrac{a}{b}

Now, Consider

\rm :\longmapsto\:\dfrac{ {sin}^{2} \theta  -  {cos}^{2} \theta }{ {sin}^{2} \theta  +  {cos}^{2} \theta }

 \red{ \sf{ \: On \: dividing \: numerator \: and \: denominator \: by \:  {cos}^{2}\theta }}

\rm \:  =  \: \dfrac{\dfrac{ {sin}^{2} \theta  -  {cos}^{2} \theta }{ {cos}^{2} \theta } }{\dfrac{ {sin}^{2} \theta  +  {cos}^{2} \theta }{ {cos}^{2} \theta } }

\rm \:  =  \: \dfrac{\dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta }  - 1}{\dfrac{ {sin}^{2} \theta}{ {cos}^{2} \theta }  + 1}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  \frac{sinx}{cosx} = tanx \: }}}

So, using this, we get

\rm \:  =  \: \dfrac{ {tan}^{2} \theta  - 1}{ {tan}^{2} \theta  + 1}

\rm \:  =  \: \dfrac{\dfrac{ {a}^{2} }{ {b}^{2}}  - 1}{\dfrac{ {a}^{2} }{ {b}^{2} }  + 1}

\rm \:  =  \: \dfrac{\dfrac{ {a}^{2} -  {b}^{2}  }{ {b}^{2}}}{\dfrac{ {a}^{2} +  {b}^{2}  }{ {b}^{2} }}

\rm \:  =  \: \dfrac{ {a}^{2}  -  {b}^{2} }{ {a}^{2}  +  {b}^{2} }

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions