Math, asked by Arceus02, 8 months ago

If \sf{{(x+1)}^{7} = {a}_{7}{x}^{7} + {a}_{6}{x}^{6} + {a}_{5}{x}^{5} + ... + {a}_{1}x + {a}_{0}}
\sf{and \:{x}_{1}, {x}_{2}, ... , {x}_{7}} are the zeroes of \sf{{(x+1)}^{7}}.
\bf{\underline{Find the value of :-}}
(i) \sf{\sum{x}_{1} {x}_{2}}
(ii) \sf{{a}_{6} + {a}_{4} + {a}_{2} + {a}_{0}}

[Ans. (i) = 21 and (ii) = 64]

Kindly scroll leftwards to see full question.

Answers

Answered by shadowsabers03
12

We're given,

\sf{\longrightarrow (x+1)^7=a_7x^7+a_6x^6+a_5x^5+\,\dots\,+a_1x+a_0}

Or,

\displaystyle\sf{\longrightarrow (x+1)^7=\sum_{r=0}^7a_{7-r}x^{7-r}}

By binomial expansion,

\displaystyle\sf{\longrightarrow \sum_{r=0}^7\,^7C_r\,x^{7-r}=\sum_{r=0}^7a_{7-r}x^{7-r}}

From this we get,

\sf{\longrightarrow a_{7-r}=\,^7C_r\quad\forall r\in\{0,\ 1,\ 2,\,\dots\,\ 7\}\quad\quad\dots(1)}

(i)  The zero of \sf{(x+1)^7=0} is only \sf{x=-1.} Thus,

\sf{\longrightarrow x_1=x_2=x_3=\,\dots\,=x_7=-1}

The sum \displaystyle\sf{\sum x_1x_2} actually is the sum of all possible combinations of the zeroes \sf{x_1,\ x_2,\ x_3,\,\dots\,,\ x_7,} two taken at a time.

The no. of possible combinations of taking two among the 7 zeroes is \sf{^7C_2.}

Therefore,

\displaystyle\sf{\longrightarrow \sum x_1x_2=\underbrace{(-1)(-1)+(-1)(-1)+(-1)(-1)+\,\dots\,+(-1)(-1)}_{\sf{\,^7C_2\ terms}}}

\displaystyle\sf{\longrightarrow \sum x_1x_2=\underbrace{1+1+1+\,\dots\,+1}_{\sf{\,^7C_2\ terms}}}

\displaystyle\sf{\longrightarrow \sum x_1x_2=\,^7C_2}

\displaystyle\sf{\longrightarrow\underline{\underline{\sum x_1x_2=21}}}

OR

The expansion of \sf{(x+1)^7} implies,

\displaystyle\sf{\longrightarrow\sum x_1x_2=\dfrac{a_5}{a_7}}

\displaystyle\sf{\longrightarrow\sum x_1x_2=\dfrac{a_{7-2}}{a_{7-0}}}

From (1),

\displaystyle\sf{\longrightarrow\sum x_1x_2=\dfrac{^7C_2}{^7C_0}}

\displaystyle\sf{\longrightarrow\sum x_1x_2=\dfrac{21}{1}}

\displaystyle\sf{\longrightarrow\underline{\underline{\sum x_1x_2=21}}}

(ii)  Put \sf{x=1} in the expansion.

\sf{\longrightarrow (1+1)^7=a_7(1)^7+a_6(1)^6+a_5(1)^5+\,\dots\,+a_1(1)+a_0}

\sf{\longrightarrow2^7=a_7+a_6+a_5+\,\dots\,+a_1+a_0\quad\quad\dots(2)}

Similarly, put \sf{x=-1.}

\sf{\longrightarrow (-1+1)^7=a_7(-1)^7+a_6(-1)^6+a_5(-1)^5+\,\dots\,+a_1(-1)+a_0}

\sf{\longrightarrow 0=-a_7+a_6-a_5+\,\dots\,-a_1+a_0\quad\quad\dots(3)}

Adding (2) and (3),

\sf{\longrightarrow2^7+0=(a_7+a_6+a_5+\,\dots\,+a_1+a_0)+(-a_7+a_6-a_5+\,\dots\,-a_1+a_0)}

\sf{\longrightarrow2^7=a_7+a_6+a_5+\,\dots\,+a_1+a_0-a_7+a_6-a_5+\,\dots\,-a_1+a_0}

\sf{\longrightarrow2^7=2a_6+2a_4+2a_2+2a_0}

\sf{\longrightarrow2^7=2(a_6+a_4+a_2+a_0)}

\sf{\longrightarrow a_6+a_4+a_2+a_0=\dfrac{2^7}{2}}

\sf{\longrightarrow a_6+a_4+a_2+a_0=2^6}

\sf{\longrightarrow\underline{\underline{a_6+a_4+a_2+a_0=64}}}

Answered by Anonymous
19

We're given,

\sf{\longrightarrow (x+1)^7=a_7x^7+a_6x^6+a_5x^5+\,\dots\,+a_1x+a_0}

Or,

\displaystyle\sf{\longrightarrow (x+1)^7=\sum_{r=0}^7a_{7-r}x^{7-r}}

By binomial expansion,

\displaystyle\sf{\longrightarrow \sum_{r=0}^7\,^7C_r\,x^{7-r}=\sum_{r=0}^7a_{7-r}x^{7-r}}

From this we get,

\sf{\longrightarrow a_{7-r}=\,^7C_r\quad\forall r\in\{0,\ 1,\ 2,\,\dots\,\ 7\}\quad\quad\dots(1)}

(i)  The zero of \sf{(x+1)^7=0} is only \sf{x=-1.} Thus,

\sf{\longrightarrow x_1=x_2=x_3=\,\dots\,=x_7=-1}

The sum \displaystyle\sf{\sum x_1x_2} actually is the sum of all possible combinations of the zeroes \sf{x_1,\ x_2,\ x_3,\,\dots\,,\ x_7,} two taken at a time.

The no. of possible combinations of taking two among the 7 zeroes is \sf{^7C_2.}

Therefore,

\displaystyle\sf{\longrightarrow \sum x_1x_2=\underbrace{(-1)(-1)+(-1)(-1)+(-1)(-1)+\,\dots\,+(-1)(-1)}_{\sf{\,^7C_2\ terms}}}

\displaystyle\sf{\longrightarrow \sum x_1x_2=\underbrace{1+1+1+\,\dots\,+1}_{\sf{\,^7C_2\ terms}}}

\displaystyle\sf{\longrightarrow \sum x_1x_2=\,^7C_2}

\displaystyle\sf{\longrightarrow\underline{\underline{\sum x_1x_2=21}}}

OR

The expansion of \sf{(x+1)^7} implies,

\displaystyle\sf{\longrightarrow\sum x_1x_2=\dfrac{a_5}{a_7}}

\displaystyle\sf{\longrightarrow\sum x_1x_2=\dfrac{a_{7-2}}{a_{7-0}}}

From (1),

\displaystyle\sf{\longrightarrow\sum x_1x_2=\dfrac{^7C_2}{^7C_0}}

\displaystyle\sf{\longrightarrow\sum x_1x_2=\dfrac{21}{1}}

\displaystyle\sf{\longrightarrow\underline{\underline{\sum x_1x_2=21}}}

(ii)  Put \sf{x=1} in the expansion.

\sf{\longrightarrow (1+1)^7=a_7(1)^7+a_6(1)^6+a_5(1)^5+\,\dots\,+a_1(1)+a_0}

\sf{\longrightarrow2^7=a_7+a_6+a_5+\,\dots\,+a_1+a_0\quad\quad\dots(2)}

Similarly, put \sf{x=-1.}

\sf{\longrightarrow (-1+1)^7=a_7(-1)^7+a_6(-1)^6+a_5(-1)^5+\,\dots\,+a_1(-1)+a_0}

\sf{\longrightarrow 0=-a_7+a_6-a_5+\,\dots\,-a_1+a_0\quad\quad\dots(3)}

Adding (2) and (3),

\sf{\longrightarrow2^7+0=(a_7+a_6+a_5+\,\dots\,+a_1+a_0)+(-a_7+a_6-a_5+\,\dots\,-a_1+a_0)}

\sf{\longrightarrow2^7=a_7+a_6+a_5+\,\dots\,+a_1+a_0-a_7+a_6-a_5+\,\dots\,-a_1+a_0}

\sf{\longrightarrow2^7=2a_6+2a_4+2a_2+2a_0}

\sf{\longrightarrow2^7=2(a_6+a_4+a_2+a_0)}

\sf{\longrightarrow a_6+a_4+a_2+a_0=\dfrac{2^7}{2}}

\sf{\longrightarrow a_6+a_4+a_2+a_0=2^6}

\sf{\longrightarrow\underline{\underline{a_6+a_4+a_2+a_0=64}}}

I ᕼOᑭᗴ ITՏ ᕼᗴᒪᑭ YOᑌ

Similar questions