Physics, asked by Depti47, 4 months ago

If \sf x= 9+4\sqrt{5} then find

\sf  x{}^{2}+\frac{1}{x{}^{2}}

Answers

Answered by skmadhuri114
2

Answer:

begin{equation}

\nonumber f_{XYZ}(x,y,z) = \left\{

\begin{array}{l l}

\frac{1}{3}(x+2y+3z) & \quad 0 \leq x,y,z \leq 1 \\

& \quad \\

0 & \quad \text{otherwise}

\end{array} \right.

\end{equation}

Answered by Anonymous
48

To Find :-

• Value of \sf  x{}^{2}+\frac{1}{x{}^{2}}

Solution :-

Given,

\sf x= 9+4\sqrt{5}

Here, we need to find the value of \sf \frac{1}{x}

\sf:\implies \frac{1}{9+4\sqrt{5}}

\sf:\implies \frac{1}{9+4\sqrt{5}}\times \frac{9-4\sqrt{5}}{9-4\sqrt{5}}

 \sf:\implies \frac{9-4\sqrt{5}}{(9){}^{2}-(4\sqrt{5}){}^{2}}

\sf:\implies \frac{9-4\sqrt{5}}{81-80}

\sf:\implies \frac{9-4\sqrt{5}}{1}

 \sf:\implies 9-4\sqrt{5}

 \sf Hence,

• The value of \sf\frac{1}{x}= 9-4\sqrt{5}

____

Now,

\sf x+\frac{1}{x}

\sf:\implies 9+4\sqrt{5}+9-4\sqrt{5}

\sf:\implies 9+9+4\sqrt{5}-4\sqrt{5}

\sf:\implies 18

Here, \sf x+\frac{1}{x}=18

____

Again,

\sf:\implies x{}^{2}+\frac{1}{x{}^{2}}

\sf:\implies (x+\frac{1}{x}){}^{2}=x{}^{2}+\frac{1}{x{}^{2}}+2

\sf:\implies x{}^{2}+\frac{1}{x{}^{2}}+2=18

 \sf\implies x{}^{2}+\frac{1}{x{}^{2}}=18-2

\sf\implies x{}^{2}+\frac{1}{x{}^{2}}=16

\boxed {\sf {\purple {The \ required \ Value \ is\ 16.}}}

__________________________________________________


Anonymous: Nice :claps:
Similar questions