Math, asked by Anonymous, 4 months ago

If
  \sf \: x =  \dfrac{ \sqrt{a + 2b}+\sqrt{a  -  2b}}{\sqrt{a + 2b}-\sqrt{a  -  2b}}
then, find the value of bx² - ax + b.

\bf \red {NOTE:}
• No spam.
• Quality answer along with explanation is needed.
• Answer is 0.


Anonymous: Nice Question :-)

Answers

Answered by rkcomp31
20

Answer:

bx² - ax + b.=0

Step-by-step explanation:

Attachments:

Ekaro: Great sir :)
Answered by Anonymous
43

Explanation,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf x =  \dfrac{ \sqrt{a + 2b}  +  \sqrt{a - 2b} }{ \sqrt{a  + 2b}  -  \sqrt{a - 2b} }

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

 \displaystyle \longrightarrow \sf x =  \dfrac{ \sqrt{a + 2b}  +  \sqrt{a - 2b} }{ \sqrt{a  + 2b}  -  \sqrt{a - 2b} }   \times \dfrac{ \sqrt{a + 2b}  +  \sqrt{a - 2b} }{ \sqrt{a  + 2b}   +   \sqrt{a - 2b} }

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf x =  \dfrac{ (\sqrt{a + 2b} ) +  \sqrt{a - 2b} ) {}^{2} }{ (\sqrt{a  + 2b} ) {}^{2}  -  (\sqrt{a  +  2b}) {}^{2}  }

ㅤㅤㅤㅤㅤ

 \displaystyle \longrightarrow \sf x =   \dfrac{( \sqrt{a + 2b}) {}^{2} + ( \sqrt{a - 2b} ) {}^{2}  + 2 \times  (\sqrt{a + 2b}  )( \sqrt{a - 2b} )}{ \not{a }+ 2b  -  \not{a} + 2b}

ㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf x =   \dfrac{a + 2b - a + 2b + 2 (  \sqrt{a + 2b})( \sqrt{a - 2b}  )}{4b}

ㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf x =    \dfrac{2a + 2( \sqrt{a + 2b})( \sqrt{a - 2b}  )}{4b}

ㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf x =    \dfrac{a +  (\sqrt{a + 2b})( \sqrt{a - 2b} ) }{2b}

ㅤㅤㅤㅤㅤ

 \displaystyle \longrightarrow \sf 2bx = a + ( \sqrt{a + 2b} )( \sqrt{a - 2b} )

ㅤㅤㅤㅤㅤ

 \displaystyle \longrightarrow \sf2bx - a = ( \sqrt{a + 2b} )( \sqrt{a - 2b} )

ㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf \bigg(2bx - a \bigg) {}^{2}  =  \bigg( ( \sqrt{a + 2b}  ) + ( \sqrt{a - 2b} ) \bigg) {}^{2}

ㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf 4b {}^{2} x {}^{2}   + a {}^{2}  - 4bxa = (a + 2b)(a - 2b)

ㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf 4b {}^{2} x {}^{2}   + a {}^{2}  - 4bxa   = a {}^{2} - 4b {}^{2}

ㅤㅤㅤㅤㅤ

 \displaystyle \longrightarrow \sf 4b {}^{2}  x {}^{2}  + a {}^{2} - 4bxa - a {}^{2}   + 4b {}^{2}  = 0

ㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf 4b {}^{2} x {}^{2}  - 4bxa  + 4b {}^{2}  = 0

ㅤㅤㅤㅤㅤ

\displaystyle \longrightarrow \sf 4b(bx {}^{2}    - ax + b) = 0

ㅤㅤㅤㅤㅤ

 \displaystyle \longrightarrow \underline{ \boxed{ \sf bx {}^{2}   - ax + b = 0}}  \: \bigstar


Lovelycandy: Keep it up :)
Anonymous: Great bro :)
ItzRadhika: Fabulous bhai 。◕‿◕。
Anonymous: Wow! Amazing♡~
VinCus: Superb! as always!!.......☆
ʝεɳყ: Perfect ❤️
Similar questions