Math, asked by SweetLily, 10 hours ago

if

 \sf{x \sqrt{1 + y} + y \sqrt{1 + x} = 0 \: \: then \: \: \dfrac{dy}{dx} = }

options are :-
a) \dfrac{x+1}{x}

b) \dfrac{ 1}{1+x}
c) \dfrac{-1}{(1+x)²}\\ \\ d) \dfrac{x}{1+x}

Answers

Answered by SparklingBoy
49

We have given that :

 \rm x \sqrt{1 + y}  + y \sqrt{1 + x}  = 0 \\  \\

: \longmapsto  \rm  x \sqrt{1 + y}  =  - y \sqrt{1 + x}  \\  \\

 \bigstar \:   \pmb{ \mathfrak{ \text Squaring  \: both  \: sides}} \\  \\

: \longmapsto  \rm  {x}^{2} (1 + y) = ( - y) ^{2} (1 + x) \\  \\

: \longmapsto  \rm  {x}^{2} (1 + y) =  ({ - y)}^{2} (1 + x) \\  \\

: \longmapsto  \rm  {x}^{2} (1 + y) =  y^{2} (1  + x) \\  \\

: \longmapsto  \rm  {x}^{2}  +  {x}^{2} y =  {y}^{2}  + xy {}^{2}  \\  \\

: \longmapsto  \rm  {x}^{2}  -  {y}^{2}  =  {xy}^{2}  -  {x}^{2} y \\  \\

: \longmapsto  \rm (x + y)(x - y) = xy(y - x) \\  \\

: \longmapsto  \rm  - (x + y)  \: \cancel{(y - x)} = xy \:  \cancel{(y - x)} \\  \\

: \longmapsto  \rm  - x - y = xy \\  \\

: \longmapsto  \rm  - x =  xy + y\\  \\  \\

: \longmapsto  \rm  - x = y(x + 1) \\  \\

: \longmapsto  \rm y =  -  \frac{x}{x + 1}  \\  \\

 \bigstar \:  \pmb{\frak{Differentiating \:  both  \: sides  \:  \text w.r.t. \: \:   \text x}} \\  \\

: \longmapsto  \rm  \frac{dy}{dx}  =  \frac{d}{dx} \bigg(  -  \frac{x}{x + 1} \bigg) \\  \\

: \longmapsto  \rm  \frac{dy}{dx}  =  -  \frac{d}{dx}  \bigg( \frac{x}{x + 1}  \bigg) \\  \\

 \bigstar \:  \pmb{ \frak{Differentiating \: using \: quotient \: rule}} \\  \\

: \longmapsto  \rm  \frac{dy}{dx}  =  -  \bigg( \frac{(x  +  1) \frac{d}{dx} ( x)  - x \frac{d}{dx} (x + 1)}{ {(x + 1)}^{2} }  \bigg) \\  \\

: \longmapsto  \rm  \frac{dy}{dx} =   - \bigg( \frac{(x + 1).1 - x.1}{ {(1 + x)}^{2} } \bigg)  \\  \\

: \longmapsto  \rm  \frac{dy}{dx}  =  -  \bigg( \frac{x + 1 - x}{ {(1 + x)}^{2} }  \bigg) \\  \\

\large: \longmapsto  \underbrace{\underline{\bf  \frac{dy}{dx}  =  -  \frac{1}{ {(1 + x)}^{2} }}}  \\  \\

Hence, option C is correct.

Similar questions