Math, asked by Anonymous, 4 days ago

If\sf{y={\sin}^{-1}\{x-\sqrt{1-x}-\sqrt{x}\sqrt{1-x^2}\}} and 0 < x < 1, then find\sf{\frac{dy}{dx}}.
\pink\dashrightarrow\bf{No\:spamming}
\pink\dashrightarrow\bf{Full\:Explanation\:Required}

Answers

Answered by Prettyboy1231
8

Find derivative of f(x)=sin−1[x1−x−−−−−√−x−−√1−x2−−−−−√], 0<x<1

Let x=sina and x−−√=cosb

Then I'll get:

y=sin−1[sinacosb−cosasinb]=sin−1[sin(a−b)]⟹siny=sin(a−b)⟹y=nπ+(−1)n(a−b)=nπ+(−1)n(sin−1x−sin−1x−−√)

Thus,

y′=ddx[nπ+(−1)n(a−b)]=⎧⎩⎨⎪⎪⎪⎪11−x2√−12x√1−x√ if n is even−[11−x2√−12x√1−x√] if n is odd

Answered by agnit115
2

Answer:

tex]\sf{y={\sin}^{-1}\{x-\sqrt{1-x}-\sqrt{x}\sqrt{1-x^2}\}}[/tex] and 0 < x < 1, then find\sf{\frac{dy}{dx}}.

\pink\dashrightarrow\bf{No\:spamming}

\pink\dashrightarrow\bf{Full\:Explanation\:Required}

Similar questions