Math, asked by Ataraxia, 1 month ago

If \sf y = (x+ \sqrt{1+x^{2}})^{n}, then \sf (1+x)^{2} \dfrac{d^{2}y}{dx^{2}}+ x\dfrac{dy}{dx} is?

Answers

Answered by rohithkrhoypuc1
13

Answer:

I posted the answer in attachment.

Hope it helps u mam /sir .

I tried my best .

Thank u.

Attachments:

Ataraxia: Thankewww (:
Answered by SparklingBoy
44

-------------------------------

▪ Given :-

\mathtt{y = (x+ \sqrt{1+x^{2}})^{n}}

-------------------------------

To Find :-

\mathtt{(1+x)^{2} \dfrac{d^{2}y}{dx^{2}}+ x\dfrac{dy}{dx}}

-------------------------------

Answer :-

\huge\purple{ \bf n {}^{2} y}

-------------------------------

Step by step Solution :-

 \mathtt{ y = (x+ \sqrt{1+x^{2}})^{n}}

Differentiating both sides w.r.t x

 \large\mathtt{\dfrac{dy}{dx} = n.(x+ \sqrt{1+x^{2}})^{n - 1} }  \\ \large\mathtt{ \times  \frac{d}{dx} (x+ \sqrt{1+x^{2}})} \\  \\ \large \mathtt{\dfrac{dy}{dx} = n.(x+ \sqrt{1+x^{2}})^{n - 1} }  \\ \large \mathtt{ \times  \frac{d}{dx} (x+ {(1+x^{2}  {)}^{1/2} }) {}^{} }  \\  \\ \large \mathtt{\dfrac{dy}{dx} = n.(x+ \sqrt{1+x^{2}})^{n - 1} }  \\ \large\mathtt{ \times (1  +  \frac{d}{dx}(1+x^{2}  {)}^{1/2})} \\  \\ \large\mathtt{\dfrac{dy}{dx} = n.(x+ \sqrt{1+x^{2}})^{n - 1} }  \\ \large \mathtt{ \times (1  +   \frac{1}{2} (1+x^{2}  {)}^{ - 1/2}\times 2x})\\\\

\large\mathtt{\dfrac{dy}{dx} = n.(x+ \sqrt{1+x^{2}})^{n - 1} } \\ \large \mathtt{ \times  \bigg(1  +  \frac{x}{ \sqrt{1 +  {x}^{2} } } } \bigg) \\  \\ \large \mathtt{\dfrac{dy}{dx} = n.(x+ \sqrt{1+x^{2}})^{n - 1} }  \\ \large\mathtt{ \times  \bigg(  \frac{  \sqrt{1 +  {x}^{2}  } + x }{ \sqrt{1 +  {x}^{2} } } } \bigg) \\  \\  \large=  \mathtt{ \dfrac{n.(x +  \sqrt{1 +  {x}^{2} } ) {}^{n} }{ \sqrt{ 1 +  {x}^{2} } } } \\  \\ \large \mathtt{  \frac{dy}{dx} =  \frac{ny}{ \sqrt{1 +  {x}^{2} } } }\\\\

\purple{:  \longmapsto\boxed{\boxed{ \large\mathtt{ ( \sqrt{1 +  {x}^{2} } )  \dfrac{dy}{dx}  = ny}}}}\:\:---(1)

Differentiating both sides w.r.t x

\large\mathtt{({\sqrt{ 1 +  {x}^{2} }).  \dfrac{ {{d}^{2}y }}{ {{dx}^{2} }}}}     \\   \\  \large +  \mathtt{ \frac{dy}{dx}. \frac{d}{dx}( \sqrt{1 +  {x}^{2} } )   = n \frac{dy}{dx} }\\\\

 \mathtt{ \sqrt{1 +  {x}^{2} }.  \dfrac{ {d}^{2} y}{dx {}^{2} }  \:  \:   }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:   \:  \:  \:  \:  +  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{ = n \frac{dy}{dx}}  \\  \mathtt{  \dfrac{dy}{dx}  . \frac{1}{ \not2}  \times  \frac{ \not2x}{ \sqrt{1 +  {x}^{2} } }  }

 \large\bf Multiplying \:\:  Both  \:\: Sides \:\:  by\:  \\ \large \bf \sqrt{1 +  {x}^{2} }

We Get ,

 \large\mathtt{(1  + {x}^{2})  \dfrac{ {d}^{2} y}{dx {}^{2} } + x \dfrac{dy}{dx}  = n.(ny)} \\    \bf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{\because  {eq}^{n}  \:  \: (1) \}

 \large\pink{ : \longmapsto\mathtt{(1  + {x}^{2})  \dfrac{ {d}^{2} y}{dx {}^{2} } + x \dfrac{dy}{dx}  = n {}^{2} y}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------


Ataraxia: Aww, Tha
Ataraxia: Thankeww* ^^"
Similar questions