Math, asked by adiwan2, 2 months ago

If

sin^{-1}(x)+sin^{-1}(y)=\dfrac{2\pi}{3}

Then what is the value of

cos^{-1}(x)+cos^{-1}(y)

Answers

Answered by LivetoLearn143
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {sin}^{ - 1}x +  {sin}^{ - 1}y = \dfrac{2\pi}{3}

We know,

\rm :\longmapsto\: {sin}^{ - 1}x +  {cos}^{ - 1}x = \dfrac{\pi}{2}

So,

\rm :\longmapsto\: {sin}^{ - 1}x  = \dfrac{\pi}{2}  -  {cos}^{ - 1}x

Now,

Given equation can be reduced as

\rm :\longmapsto\:\dfrac{\pi}{2}  -  {cos}^{ - 1}x + \dfrac{\pi}{2}  -  {cos}^{ - 1}y = \dfrac{2\pi}{3}

\rm :\longmapsto\:\pi  -  {cos}^{ - 1}x   -  {cos}^{ - 1}y = \dfrac{2\pi}{3}

\rm :\longmapsto\:{cos}^{ - 1}x +  {cos}^{ - 1}y =\pi -  \dfrac{2\pi}{3}

\rm :\longmapsto\:{cos}^{ - 1}x +  {cos}^{ - 1}y = \dfrac{3\pi - 2\pi}{3}

\rm :\longmapsto\:{cos}^{ - 1}x +  {cos}^{ - 1}y = \dfrac{\pi }{3}

More to know

\rm :\longmapsto\: {sec}^{ - 1}x +  {cosec}^{ - 1}x = \dfrac{\pi}{2}

\rm :\longmapsto\: {tan}^{ - 1}x +  {cot}^{ - 1}x = \dfrac{\pi}{2}

\boxed{ \sf{ \:  {sin}^{ - 1}x +  {sin}^{ - 1}y =  {sin}^{ - 1}(x \sqrt{1 -  {y}^{2} } + y \sqrt{1 -  {x}^{2} }}}

\boxed{ \sf{ \:  {sin}^{ - 1}x - {sin}^{ - 1}y =  {sin}^{ - 1}(x \sqrt{1 -  {y}^{2} } - y \sqrt{1 -  {x}^{2} }}}

Similar questions