Math, asked by 12ahujagitansh, 3 days ago

If

 {sin}^{ - 1}x +  {sin}^{ - 1} y =  \frac{2\pi}{3}  \\ find \: the \: value \: of \:  {cos}^{ - 1} x +  {cos}^{ - 1} y

explain all steps completely​

Answers

Answered by mathdude500
22

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {sin}^{ - 1}x +  {sin}^{ - 1}y = \dfrac{2\pi}{3}  \\

We know,

\boxed{\sf{  \:\rm \:  {sin}^{ - 1}x +  {cos}^{ - 1}x = \dfrac{\pi}{2} \: }}  \\

So, using this identity, we get

\rm \: \bigg(\dfrac{\pi}{2} -  {cos}^{ - 1}x \bigg)+ \bigg(\dfrac{\pi}{2} -  {cos}^{ - 1}y \bigg)= \dfrac{2\pi}{3} \\

\rm \:\dfrac{\pi}{2} -  {cos}^{ - 1}x + \dfrac{\pi}{2} -  {cos}^{ - 1}y = \dfrac{2\pi}{3} \\

\rm \:\pi -  {cos}^{ - 1}x  -  {cos}^{ - 1}y = \dfrac{2\pi}{3} \\

\rm \:{cos}^{ - 1}x + {cos}^{ - 1}y = \pi - \dfrac{2\pi}{3} \\

\rm\implies \: \boxed{\sf{  \:\: \rm \:{cos}^{ - 1}x + {cos}^{ - 1}y = \dfrac{\pi}{3} \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut Trick

\boxed{\sf{  \:\rm \: If \:  {sin}^{ - 1}x +  {sin}^{ - 1}y =  \alpha  \: then \:  {cos}^{ - 1}x +  {cos}^{ - 1}y = \pi -  \alpha \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:\rm \: If \:  {cos}^{ - 1}x +  {cos}^{ - 1}y =  \alpha  \: then \:  {sin}^{ - 1}x +  {sin}^{ - 1}y = \pi -  \alpha \: }} \\

\boxed{\sf{  \:\rm \: If \:  {cot}^{ - 1}x +  {cot}^{ - 1}y =  \alpha  \: then \:  {tan}^{ - 1}x +  {tan}^{ - 1}y = \pi -  \alpha \: }} \\

\boxed{\sf{  \:\rm \: If \:  {tan}^{ - 1}x +  {tan}^{ - 1}y =  \alpha  \: then \:  {cot}^{ - 1}x +  {cot}^{ - 1}y = \pi -  \alpha \: }} \\

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y =  {sin}^{ - 1}(sinx) & \sf  x \:  \: if -\dfrac{\pi  }{2} \leqslant x \leqslant \dfrac{\pi  }{2}\\ \\ \sf y =  {cos}^{ - 1}(cosx) & \sf x \:  \: if \: 0 \leqslant y \leqslant \pi \\ \\ \sf y =  {tan}^{ - 1}(tanx) & \sf x \:  \: if \:  - \dfrac{\pi  }{2} < x < \dfrac{\pi  }{2}\\ \\ \sf y =  {cosec}^{ - 1}(cosecx) & \sf x \:  \: if \: x \:  \in \: \bigg[ - \dfrac{\pi}{2}, \: \dfrac{\pi  }{2}\bigg] -  \{0 \}\\ \\ \sf y =  {sec}^{ - 1}(secx) & \sf x \:  \: if \: x \:  \in \: [0, \: \pi] \:   -  \: \bigg\{\dfrac{\pi  }{2}\bigg\}\\ \\ \sf y =  {cot}^{ - 1}(cotx) & \sf x \:  \: if \:  \:  \in \: \bigg( -  \dfrac{\pi  }{2} , \dfrac{\pi  }{2}\bigg) -  \{0 \} \end{array}} \\ \end{gathered} \\

Similar questions