If , compute cos A and tan A.
Answers
Firstly, express sin A in terms of perpendicular and hypotenuse i.e. sin A = perpendicular / hypotenuse
and then by using Pythagoras theorem in right ∆ ABC (AC² = AB² + BC²) , find the third side of the triangle (Base) . Further determine the value of cos A and tan A by using the formula :
cos A = base /hypotenuse
tan A = perpendicular/ base
SOLUTION :
Given: sin A = 9/ 41
sin A = Perpendicular /Hypotenuse = 9/41
Perpendicular side = 9 and
Hypotenuse = 41
We draw a ∆ ABC right angled at B.
In ΔABC,
Let BC = Perpendicular = 9 , Hypotenuse (AC) = 41, base (AB)
AC² = AB² + BC
[by using Pythagoras theorem]
41² = AB² + 9²
AB² = 41² - 9²
AB² = 1681 – 81
AB= √1600
AB = 40
Hence, length of side AB = 40
Now
cos A= Base / Hypotenuse
cos A = AB/AC
cosA = 40/41
tan A= Perpendicular/ Base
tan A= BC/AB
tan A = 9/40
Hence, cos A = 40/41 , tan A=9/40
HOPE THIS ANSWER WILL HELP YOU...
using pythagoras theorem
cos A = 40/41
tan A = 9/40
hope u'll get it..if u hv any query then comment..i'll help u..