Math, asked by baziger23032006, 6 hours ago

If
 \sin(x)  = 1 \div 3 \:  \:  \tan(y)  = 1 \div 2
and
(\pi \div 2) < x < \pi < y < 3\pi \div 2
then
8 \tan(x)  -   \sqrt{5 \sec(y) }
=?​

Answers

Answered by gouravgupta65
4

 \red{ \mathcal{Correct \: Question}}

If

 \sin(x) = 1 \div 3 \: \: \tan(y) = 1 \div 2

and

(\pi \div 2) < x < \pi < y < 3\pi \div 2

then

 8 \tan(x)  -  \sqrt{5}  \sec(y)

Answer -->

 \large {\bold {\sin(x)  =  \frac{1}{3}}}  \\  : \to  \cos(x)  =   - \sqrt{1 -  { \sin(x) }^{2} }  \\  =   - \sqrt{ \frac{8}{9 } }  \\  : \to \:  \tan(x) =   \frac{ \frac{ - 1}{3} }{ { \frac{2 \sqrt{2} }{3} } }  =  \frac{ - 1}{2 \sqrt{2} }

 \large{\bold{ \tan(y)  =  \frac{1}{2} }} \\  \\  :  \to \:  \sec(y)  =   - \sqrt{1 +  \tan(y)^{2}  }  \\  :  \to \:  \sec(y)  =  - \frac{ \sqrt{5} }{2}

8 \tan(x)  -  \sqrt{5}  \sec(y)  = 4 \times  \frac{ - 1}{2 \sqrt{2} }  -  \sqrt{5}  \times  \frac{ -  \sqrt{5} }{2 } \\  \\  =   \bold{ \boxed{\frac{ - 4 \sqrt{2} + 5 }{2} }}

Hope this Help you

Similar questions