Math, asked by Swarup1998, 1 year ago

If
\small{sin^{-1}x+sin^{-1}y+sin^{-1}z=\frac{\pi}{2}} ,
show that x^{2}+y^{2}+z^{2}+2xyz=1.

Answers

Answered by Anonymous
17

 \huge \mathfrak \red{answer}

Formula's I Used! :)

 \sin^{ - 1} (x)   =  \frac{\pi}{2}  -  \cos^{ - 1} (x)

 cos^{ - 1} (x)  + cos^{ - 1} (y)  =cos^{ - 1} (xy -  \sqrt{1 - y^{2} }  \times  \sqrt{1 -  {x}^{2} } )

\pi - cos^{ - 1} (x)  = cos^{ - 1} ( - x)

 \huge  \mathfrak {\bf {\fbox{ \red{thanks}}}}

Attachments:
Similar questions