Math, asked by Anonymous, 1 year ago

If
 \sqrt{13 - a \sqrt{10} }  =  \sqrt{8}  +  \sqrt{5}
Then Find the value of a.

Answers

Answered by ShuchiRecites
115
Hello Mate!

Answer: Value of a is - 4.

Step-by-step explanation:

Since we know that,

( a + b )² = a² + b² + 2ab

Squaring and doing under root of √8 + √5 we get

√( √8 + √5 )² = √( 13 - a√10 )

√( 8 + 5 + 2√40 ) = √( 13 - a√10 )

√( 13 + 4√10 ) = √( 13 - a√10 )

13 + 4√10 = 13 - a√10

4√10 = - a√10

4 = - a or a = - 4

Have great future ahead!

Anonymous: Thank you ma'am ji
ShuchiRecites: Always welcome dahi
Anonymous: ☺✌
Anonymous: Nice answer :)
ShuchiRecites: Thanks Asp39
ShuchiRecites: Thanks for attempting brainliest :)
Answered by Anonymous
95
☯Dearest Friend!☯



✅ Question: ✅

 \implies{ \mathsf{ { { \blue{ \sqrt{13 - a \sqrt{10} } = \sqrt{8} + \sqrt{5}}}}}}


☯ Answer: ☯


Value of a is (-4)✅✅✅✅✅


☯ Method of Solution: ☯

 \sqrt{13 - a \sqrt{10} } = \sqrt{8} + \sqrt{5}

 \implies{\mathsf{\sqrt{13 - a \sqrt{10} } = \sqrt{8} + \sqrt{5}}} \\  \\  \\  \\  \implies{ \mathsf{ \large{ \fbox{Squaring  \:  \: on \:  Both  \:  \: Sides:}}}} \\  \\  \\ \implies{ \mathsf{ 13  - a \sqrt{10}  = 8 + 5 + 2 \sqrt{40}}} \\  \\  \\ \implies{ \mathsf{ 13 - a \sqrt{10}  = 13 + 2 \sqrt{40}}} \\  \\  \\  \implies{ \mathsf{ { { \red{\cancel{13} - a \sqrt{10}  = { \cancel{13} + 2 \sqrt{40}}}}}}} \\  \\ \\  \\  \implies{ \mathsf{ { { \green{ - a \sqrt{10}  = 4 \sqrt{10}}}}}} \\  \\  \\  \\ \implies{ \mathsf{ { { \green{ - a { \cancel{\sqrt{10}}  = 4 { \cancel{\sqrt{10}}}}}}}}} \\  \\  \\  \\ \implies{ \mathsf{ { \blue{ - a = 4}}}} \\  \\  \\  \\  \implies{ \mathsf{ { \green {a =  - 4}}}}

\implies{ \mathsf{ { { \red{Hence, Required \:  Value \:  of \:  a \:  is \:  (-4)?}}}}}




Anonymous: ✌☺
Anonymous: Nice answer :)
Anonymous: Thank You!
Similar questions