Math, asked by anamk56, 7 months ago

if
 \sqrt{3} ( \sqrt{7}  -  \sqrt{3} )  =  \sqrt{a }  + b \:
what is the value of a and b​

Answers

Answered by Anonymous
7

Step-by-step explanation:

\huge\tt\underline\blue{⛶Answer⛶ }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

 \frac{8 + 3 \sqrt{7} }{8 - 3 \sqrt{7} } - \frac{8 - 3 \sqrt{7} }{8 + 3 \sqrt{7} } = a + b \sqrt{7}

\frac{(8 + 3 \sqrt{7})(8 + 3 \sqrt{7}) - [(8 - 3 \sqrt{7} )(8 - 3 \sqrt{7}) ]}{(8 + 3 \sqrt{7} )(8 - 3 \sqrt{7} )}

{(a + b)}^{2} - {(a - b)}^{2} = 4ab(a+b)

\frac{4 \times 8 \sqrt{7} }{ {(8)}^{2} - {(3 \sqrt{7}) }^{2} } = a + b \sqrt{7}

 \frac{32 \sqrt{7} }{64 - 63} = a + b \sqrt{7}

\frac{32 \sqrt{7} }{1} = a + b \sqrt{7}

32 \sqrt{7} = a + b \sqrt{7}⟹32

⟹0 + 32 \sqrt{7} = a + b \sqrt{7}⟹0+32

On comparing both sides:-

⟹a = 0 \: and \: b = 32⟹a=0andb=32

⟹now \: \sqrt{a - b} = \sqrt{0 - 32} = \sqrt{ - 32 } = \sqrt{ - 2 \times 16} = 4 \sqrt{ - 2} = 4 \sqrt{2} i \: [( {i}^{2} = - 1)

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
0

Answer:

thanks for free point............

Similar questions