Math, asked by ItzLily157, 3 months ago

If
 \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7} } } } }  =  {7}^{x}
then find the value of x.
Answer is 31/32, kindly provide explanation.​

Answers

Answered by chirag9090singh9090
0

\huge\color{cyan}\boxed{\colorbox{black}{ANSWER ❤}}

\red{\sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7} } } } } }= \purple{{7}^{x}}

\red{ {7}^{ \frac{1}{2} }  \times  {7}^{ \frac{1}{2} }  \times  {7}^{ \frac{1}{2} }  \times  {7}^{ \frac{1}{2} }  \times  {7}^{ \frac{1}{2} } } = \purple{ {7}^{x} }

\red{ {7}^{ \frac{1}{2} +  \frac{1}{2}   +  \frac{1}{2} +  \frac{1}{2}  +  \frac{1}{2}  } } = \purple{ {7}^{x} }

\red{ {7}^{ \frac{5}{2} } } = \purple{ {7}^{x} }

\purple{x} = \red{ \frac{5}{2} }

Similar questions