Math, asked by coffee83, 16 days ago

If
 \sqrt{u}  +  \sqrt{v}   -  \sqrt{w }  = 0
find the value of
(u + v  -  w)

Answers

Answered by Anonymous
0

 \huge{\bold{\red{\underbrace{\color{blue}{Answer}}}}}

Given:

 \sqrt{u}  +  \sqrt{v}  +  \sqrt{w}  = 0

To find:

Value of  u + v - w

Solution:

 ∵ \sqrt{u}  +  \sqrt{v}  +  \sqrt{w}

 ∴ \sqrt{u }  +  \sqrt{v}  =  \sqrt{w}

Squaring both sides, we get:-

\implies{u + v + 2 \sqrt{uv}  = w}

 \implies{u + v - w  = 2 \sqrt{uv}}

_____________________________

Similar questions