Math, asked by Saby123, 11 months ago

IF


 \sqrt{ {x}^{2} +  \sqrt[3]{ {x}^{4}  {y}^{2} }   }   \: + \:  \sqrt{ {y}^{2} +  \sqrt[3]{ {x}^{2}  {y}^{4} }  }   = a
Then Prove That

 {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }

Answers

Answered by rishu6845
9

\bold{Given}\longrightarrow \\  \sqrt{ {x}^{2} +  \sqrt[3]{ {x}^{4}  {y}^{2} }  }  \:  +  \sqrt{ {y}^{2}  +  \sqrt[3]{ {x}^{2} {y}^{4}  } }  \:  = a

\bold{To \: prove}\longrightarrow \\  {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }

\bold{Concept \: used}\longrightarrow \\ 1) \sqrt[m]{x}  \: =  \:  {x}^{ \frac{1}{m} }

\bold{Proof}\longrightarrow \\  \sqrt{ {x}^{2} +  \sqrt[3]{ {x}^{4} {y}^{2}  }  }  +  \sqrt{ {y}^{2}  +  \sqrt[3]{ {x}^{2} {y}^{4}  } }   \: =  \: a

 = >   \sqrt{ {x}^{2}  +  {( {x}^{4} {y}^{2})  }^{ \frac{1}{3} } }  +  \sqrt{ {y}^{2} +  {( {x}^{2} {y}^{4} ) }^{ \frac{1}{3} }  }  = a

 =  >  \sqrt{ {x}^{2}  +  {x}^{ \frac{4}{3} } {y}^{ \frac{2}{3} }  }  \:  +  \sqrt{ {y}^{2} +  {x}^{ \frac{2}{3} }  {y}^{ \frac{4}{3} }  }  = a

 =  >  \sqrt{ {x}^{ \frac{4}{3} } ( {x}^{2 -  \frac{4}{3} }  +  {y}^{ \frac{2}{3} } )}  \:  +  \sqrt{ {y}^{ \frac{2}{3} } ( {y}^{2 -  \frac{4}{3} } +  {x}^{ \frac{2}{3} })  }

 =  >   {x}^{ \frac{2}{3} }  \sqrt{ {x}^{ \frac{2}{3} } +  {y}^{ \frac{2}{3} }  }  +  {y}^{ \frac{2}{3} }  \sqrt{ {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} } }  = a

 =  >  \sqrt{ {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} } }  \: ( {x}^{ \frac{2}{3}  }  +  {y}^{ \frac{2}{3} } ) = a

 =  >  {( {x}^{ \frac{2}{3} } +  {y}^{ \frac{2}{3} } ) }^{ \frac{1}{2} }  \: ( {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} } ) ^{1}  = a

 =  >  {( {x}^{ \frac{2}{3} } +  {y}^{ \frac{2}{3} } ) }^{ \frac{3}{2} }  = a

 =  >  {( {x}^{ \frac{2}{3} } +  {y}^{ \frac{2}{3} } ) }^{ \frac{3}{2}  \times  \frac{2}{3} }  =  {a}^{ \frac{2}{3} }

 =  >   {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }

Answered by chimmochi54
2

Answer:

Hey mate!!

Step-by-step explanation:

Your required answer is in picture

Attachments:
Similar questions