Math, asked by Sakshikotian31, 6 months ago

If
 \sqrt{x} + \sqrt{y } = \sqrt{10} \: \: show \: that \: dy \div dx + \sqrt{y \div x} =0(on the chapter continuation and differentiation in that second order derivatives of 12th)

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \sqrt{x}  +  \sqrt{y}  =  \sqrt{10}

Differentiating both sides,

 \implies \frac{1}{2 \sqrt{x} }  +  \frac{1}{2 \sqrt{y} } . \frac{dy}{dx}  = 0 \\

 \implies \frac{dy}{dx}  =  -  \frac{2 \sqrt{y} }{2 \sqrt{x} }  \\

 \implies \frac{dy}{dx}  =  -  \sqrt{ \frac{y}{x} }  \\

 \implies \frac{dy}{dx}  +  \sqrt{ \frac{y}{x} }  = 0 \\

Similar questions