Math, asked by priyasmitapalo113, 10 months ago

If\sqrt{x} +\sqrt{y} =\sqrt{a} find second order derivative
at x=a

Answers

Answered by Anonymous
1

Answer:

\large\boxed{\sf{-\infty}}

Step-by-step explanation:

Given an equation,

 \sqrt{x}  +  \sqrt{y}  =  \sqrt{a}

Differentiating both the sides wrt x, we get,

 =  >  \dfrac{d}{dx}  \sqrt{x}  +  \dfrac{d}{dx}  \sqrt{y}  = \dfrac{d}{dx}   \sqrt{a}

But, we know that,

  •  \dfrac{d}{dx}  {x}^{n}  = n {x}^{n - 1}

  •  \dfrac{d}{dx} c = 0

where, c is any constant term.

Therefore, we will get,

 =  >  \dfrac{1}{2 \sqrt{x} }  +   \dfrac{1}{2 \sqrt{y} }  \dfrac{dy}{dx}  = 0 \\  \\  =  >  \frac{1}{ \sqrt{x} }  +  \dfrac{1}{ \sqrt{y} }  \dfrac{dy}{dx}  = 0 \\  \\  =  >  \dfrac{1}{ \sqrt{y} }  \dfrac{dy}{dx}  =  -  \dfrac{1}{ \sqrt{x} }  \\  \\  =  >  \dfrac{dy}{dx}  =  -  \dfrac{ \sqrt{y} }{ \sqrt{x} }

Again differentiatiating both sides, wrt x,

 =  >  \dfrac{ {d}^{2}y }{d {x}^{2} }  = - \dfrac{ \sqrt{x}   \frac{d}{dx}  \sqrt{y}  -  \sqrt{y}  \frac{d}{dx}  \sqrt{x} }{ {( \sqrt{x} )}^{2} }   \\  \\  =  >  \dfrac{ {d}^{2}y }{d {x}^{2} }  = - \dfrac{ \frac{ \sqrt{x} }{2 \sqrt{y} } -  \frac{ \sqrt{y} }{2 \sqrt{x} }  }{x}  \\  \\  =  >  \dfrac{ {d}^{2} y}{d {x}^{2} }  =  -\dfrac{x - y}{2x \sqrt{xy} }

Now, when x = a,

 =  >  \sqrt{a}  +  \sqrt{y}  =  \sqrt{a}  \\  \\  =  >  \sqrt{y }  = 0 \\  \\  =  > y = 0

Therefore, second order derivative at x = a is,

 =-  \dfrac{a - 0}{2a \sqrt{a \times 0} }  \\  \\  = - \frac{a}{0}  \\  \\  = - \infty

Hence, the required value of second order derivative at x = a , is \large\bold{-\infty}.

Similar questions