If , find the value of (sin A + cos A) sec A.
Answers
Answered by
7
SOLUTION :
Given : tan A = 5/12.
We have to find the value of (sin A + cos A ) sec A .
In right angle ∆ ,
tan A = perpendicular/base = 5/12.
perpendicular = 5 , base = 12
Hypotenuse = √( perpendicular)² + (Base)²
[By Pythagoras theorem]
Hypotenuse = √ 5² + 12² = √25 + 144 = √169
Hypotenuse = 13
sin A = perpendicular/hypotenuse = 5/13
cos A = base/ hypotenuse = 12/13
sec A = hypotenuse / base = 13/12
The value of (sin A + cos A ) sec A :
= (5/13 + 12/13) × 13/12
=[ (5 + 12)/13] × 13/12
= (17/13) × (13/12)
(sin A + cos A ) sec A = 17/12
Hence, the value of (sin A + cos A ) sec A is 17/12 .
HOPE THIS ANSWER WILL HELP YOU…
Answered by
1
hey mate here is your answer ✌♥✌
given.....
tan A=5/12
to find.....
(sinA+cosA) sec A
=sinA . secA+cosA . secA
=sinA / cosA+cosA / cosA........(1 / cosA = secA)
=tanA+1...........(sinA/cosA=tanA)
=5/12 +1
=5+12/12
=17/12
hope it will help you
mark me brainliest ✌
given.....
tan A=5/12
to find.....
(sinA+cosA) sec A
=sinA . secA+cosA . secA
=sinA / cosA+cosA / cosA........(1 / cosA = secA)
=tanA+1...........(sinA/cosA=tanA)
=5/12 +1
=5+12/12
=17/12
hope it will help you
mark me brainliest ✌
Similar questions