Math, asked by aryanpol2004, 3 months ago

if
 \tan( a )  =  \sqrt{3}
and 'a' lies in the third quadrant, then what is sin(a) + cos(a)

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that .

\rm :\longmapsto\:\pi < a < \dfrac{3\pi}{2}

and

\rm :\longmapsto\:tana \:  =  \sqrt{3}

We know that

\rm :\longmapsto\: {sec}^{2}a -  {tan}^{2}a = 1

On substituting the value of tan a, we get

\rm :\longmapsto\: {sec}^{2}a -  {( \sqrt{3} )}^{2} = 1

\rm :\longmapsto\: {sec}^{2}a -  3 = 1

\rm :\longmapsto\: {sec}^{2}a  = 1 + 3

\rm :\longmapsto\: {sec}^{2}a  = 4

\rm :\longmapsto\: {sec}a  =  \:  \pm \:  2

As,

\rm :\longmapsto\:\pi < a < \dfrac{3\pi}{2}

So, seca < 0

\bf\implies \:seca =  - 2

So,

\rm :\longmapsto\:cosa =  -  \: \dfrac{1}{2}

Now,

We know that

\rm :\longmapsto\: {sin}^{2}a +  {cos}^{2}a = 1

\rm :\longmapsto\: {sin}^{2}a +   {\bigg(  - \dfrac{1}{2} \bigg) }^{2}  = 1

\rm :\longmapsto\: {sin}^{2}a +   {\bigg( \dfrac{1}{4} \bigg) } = 1

\rm :\longmapsto\: {sin}^{2}a = 1 -  \dfrac{1}{4}

\rm :\longmapsto\: {sin}^{2}a =  \dfrac{4 - 1}{4}

\rm :\longmapsto\: {sin}^{2}a =  \dfrac{3}{4}

\rm :\longmapsto\: {sin}a =  \:  \pm \:  \dfrac{ \sqrt{3} }{2}

As,

\rm :\longmapsto\:\pi &lt; a &lt; \dfrac{3\pi}{2}

So,

\rm :\longmapsto\: {sin}a =  \:   -  \:  \dfrac{ \sqrt{3} }{2}

Now,

Consider,

\rm :\longmapsto\:sina + cosa

\rm \:  =  \:  - \dfrac{ \sqrt{3} }{2}  - \dfrac{1}{2}

\rm \:  =  \:  -  \: \dfrac{ \sqrt{3}  + 1}{2}

Hence,

\bf\implies \:sina + cosa=  \:  -  \: \dfrac{ \sqrt{3}  + 1}{2}

Alternative Method :-

Given that,

\rm :\longmapsto\:\pi &lt; a &lt; \dfrac{3\pi}{2}

and

\rm :\longmapsto\:tana \:  =  \sqrt{3}

\rm :\longmapsto\:tana \:  =  tan\bigg(\dfrac{\pi}{3} \bigg)

\rm :\longmapsto\:tana \:  =  tan\bigg(\pi + \dfrac{\pi}{3} \bigg)

\rm :\longmapsto\:tana \:  =  tan\bigg(\dfrac{3\pi + \pi}{3} \bigg)

\rm :\longmapsto\:tana \:  =  tan\bigg(\dfrac{4\pi}{3} \bigg)

\bf\implies \:a = \dfrac{4\pi}{3}

Now, Consider

\rm :\longmapsto\:sina + cosa

\rm \:  =  \: sin \dfrac{4\pi}{3} + cos \dfrac{4\pi}{3}

\rm \:  =  \: sin\bigg(\pi + \dfrac{\pi}{3} \bigg) + cos\bigg(\pi + \dfrac{\pi}{3} \bigg)

\rm \:  =  \:  - sin \dfrac{\pi}{3} - cos \dfrac{\pi}{3}

\rm \:  =  \:  - \dfrac{ \sqrt{3} }{2}  - \dfrac{1}{2}

\rm \:  =  \:  -  \: \dfrac{ \sqrt{3}  + 1}{2}

Hence,

\bf\implies \:sina + cosa=  \:  -  \: \dfrac{ \sqrt{3}  + 1}{2}

Similar questions