Math, asked by ayushrawat1436, 7 hours ago

If
 \tan( \alpha )  +  \frac{1}{ \tan( \alpha ) }  = 2
then the value of cosec alpha is
a)1
b)1/√2
c)√2
d)√3/2

Answers

Answered by Anonymous
85

Trigonometric Ratios

The following are the tips and concept that can be use to find the solution:

  • Having a basic knowledge of Trigonometric ratios and Angles.
  • Trigonometric ratios are sin, cos, tan, cot, sec, cosec.
  • The standard angles of these trigonometric ratios are 0°, 30°, 45°, 60° and 90°.

Analyse the values of important angles for all the six trigonometric ratios shown in the table given below:

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

[Check the attachment if any case you're not able to see the table]

Let's head to the Question now:

\implies \tan( \alpha)  +  \dfrac{1}{\tan( \alpha)} = 2

\implies \dfrac{ \tan^{2} ( \alpha) + 1} { \tan( \alpha)}  = 2

\implies \tan^{2} ( \alpha) + 1 = 2\tan( \alpha)

\implies \tan^{2} ( \alpha) + 1 - 2\tan( \alpha) = 0

\implies \tan^{2} ( \alpha)  - 2\tan( \alpha) + 1 = 0

\implies ( \tan( \alpha) - 1)^{2}  = 0

\implies\tan( \alpha) - 1= 0

\implies\tan( \alpha) = 1

\implies \boxed{{\bf{tan( \alpha) = {45}^{ \circ}}}}

Now, we got the angle of \alpha = {45}^{ \circ}. Now we can easily find out the value of \rm{cosec(\alpha)}.

\implies \rm{cosec( \alpha) = cosec( {45}^{ \circ})}

\implies \boxed{ \bf{{cosec( \alpha) = \sqrt{2}}}}

Hence, the required value of cosec(α) is √2. So, option (c) is the correct option.

Attachments:
Answered by Rudranil420
79

Answer:

Question :-

If  \tan( \alpha ) + \dfrac{1}{ \tan( \alpha ) } = 2 then the value of cosec alpha is

a)1

b)1/√2

c)√2

d)√3/2

Given :-

  •  \tan( \alpha ) + \dfrac{1}{ \tan( \alpha ) } = 2

Find Out :-

  • The value of cosec alpha.

Solution :-

\leadsto \sf \tan( \alpha ) + \dfrac{1}{ \tan( \alpha ) } = 2

\leadsto \sf \dfrac{tan^2(\alpha) + 1}{tan( \alpha )} =\: 2

\leadsto \sf tan^2 (α)+1=2tan(α)

\leadsto \sf tan^{2} ( \alpha) + 1 - 2 tan( \alpha)= 0

\leadsto \sf tan^{2} ( \alpha) - 2 \tan( \alpha) + 1 = 0

\leadsto \sf (tan( \alpha) - 1)^{2} = 0

\leadsto \sf tan(\alpha) =\: 45^{\circ}

Now,

➙ cosec(α) = cosec(45°)

cosec(α) = 2

Henceforth, the value of cosec alpha is 2.

Correct options is (c) 2.

[Please refer that attachment for important formula regarding trigonometry]

HOPE IT HELPS YOU :)

Attachments:
Similar questions