If , then cosec2 θ-sec2 θcosec2 θ+sec2 θ=
(a)
(b)
(c)
(d)
Answers
Answered by
1
SOLUTION :
The correct option is (d) : 3/4
Given : tan θ = 1/√7
In right angle ∆ ,
tan θ = perpendicular/base = 1/√7
perpendicular = 1 , base = √7
Hypotenuse = √( perpendicular)² + (Base)²
[By Pythagoras theorem]
Hypotenuse = √ 1² + √7² = √1 + 7 = √8
Hypotenuse = √8
cosec θ = hypotenuse/ perpendicular = √8/1
cosec θ = √8
sec θ = hypotenuse/ base = √8/√7
sec θ = √8/√7
The value of : (cosec² θ - sec² θ) / (cosec² θ + sec² θ)
= [(√8)² - (√8/√7)²] / [(√8)² + (√8/√7)²]
= (8/1 - 8/7) / (8/1 + 8/7)
= [(8×7 - 8)/7] / [(8×7 + 8)/7]
= [(56 - 8 )/7 ] / [(56 + 8 )/7 ]
= (48/7) / (64/7)
= (48/7) ×( 7/64)
= 48/64
= ¾
(cosec² θ - sec² θ) / (cosec² θ + sec² θ) = 3/4
Hence, the value of (cosec² θ - sec² θ) / (cosec² θ + sec² θ) is ¾ .
HOPE THIS ANSWER WILL HELP YOU…
Answered by
0
Option ( D ) is correct.
Here I am using A instead of theta.
Given tan A = 1/√7
=> tan² A = 1/7 -----( 1 )
cot² A = 1/tan²A = 7 ----( 2 )
Now ,
Value of
( cosec²A-sec²A)/(cosec² A + sec²A )
= [(1+cot²A)-(1+tan²A)]/[(1+cot²A)+(1+tan²A)]
****************************************
By Trigonometric identities :
1 ) sec²A - tan²A = 1
2 ) cosec² A - cot²A = 1
**************************************
= ( 1+cot²A-1-tan²A)/(1+cot²A+1+tan²A)
= ( cot²A - tan²A )/( 2+cot²A+tan²A )
= [ 7 - 1/7 ]/[ 2 + 7 + 1/7 ]
= [ ( 49 - 1 )/7 ]/[ ( 14 + 49 + 1 )/7 ]
= 48/64
After cancellation, we get
= 3/4
•••••
Here I am using A instead of theta.
Given tan A = 1/√7
=> tan² A = 1/7 -----( 1 )
cot² A = 1/tan²A = 7 ----( 2 )
Now ,
Value of
( cosec²A-sec²A)/(cosec² A + sec²A )
= [(1+cot²A)-(1+tan²A)]/[(1+cot²A)+(1+tan²A)]
****************************************
By Trigonometric identities :
1 ) sec²A - tan²A = 1
2 ) cosec² A - cot²A = 1
**************************************
= ( 1+cot²A-1-tan²A)/(1+cot²A+1+tan²A)
= ( cot²A - tan²A )/( 2+cot²A+tan²A )
= [ 7 - 1/7 ]/[ 2 + 7 + 1/7 ]
= [ ( 49 - 1 )/7 ]/[ ( 14 + 49 + 1 )/7 ]
= 48/64
After cancellation, we get
= 3/4
•••••
Similar questions