Math, asked by CuteWitch, 3 months ago

If  tan \theta + sin \theta = m and  tan \theta - sin \theta = n , then show that  (m² - n²)² = 16mn \: or \: (m² - n²) = 4 \sqrt{mn}.​

Answers

Answered by Anonymous
3

GIVEN :-

 \\   \bullet \:  \:  \:  \:  \:  \:  \: \sf \: tan \theta+ sin\theta =m \\  \bullet \:  \:  \:  \:  \:  \:  \:  \sf \: tan\theta - sin\theta = n \\  \\

TO KNOW :-

  • sin²A + cos²A = 1
  • sinA/cosA = tanA
  • (x+y)² = x² + y² + 2xy
  • (x-y)² = x² + y² - 2xy

 \\

TO PROVE :-

 \\  \sf \:  \{  {m}^{2}  -  { {n}^{2}  \}}^{2}  = 16mn \\  \\

SOLUTION :-

 \\  \sf \: L.H.S =  \{ {m}^{2}  -  { {n}^{2}  \}}^{2}  \\  \\

Substituting values of m and n ,

 \\   \\  \implies \sf  \{ {(tan\theta + sin\theta)}^{2}  - ( \ {tan\theta - sin\theta) ^{2}  \}}^{2}    \\  \\  \implies \sf \:  \{ ({tan}^{2}\theta  +  {sin}^{2} \theta + 2tan\theta.sin\theta) - ( {tan}^{2} \theta +  {sin}^{2}\theta  - 2tan\theta.sin\theta)  \} ^{2}  \\  \\  \implies \sf \:   \{ \cancel{{tan}^{2}\theta}  +  \cancel{ {sin}^{2}\theta}  + 2tan\theta.sin\theta -   \cancel{{tan}^{2}\theta } -  \cancel{ {sin}^{2}\theta } + 2tan\theta.sin\theta \} ^{2}  \\  \\  \implies \sf \:  \{4tan\theta.sin\theta \} ^{2}  \\  \\  \implies \sf \: 16 {tan}^{2}\theta . {sin}^{2} \theta \:  \:  \:  \:  \:  \:  \:  -  -  - (1) \\  \\

Now we will solve R.H.S

 \\  \sf \: R.H.S = 16mn \\  \\

Substituting values of m and n ,

 \\  \implies \sf \: 16(tan\theta + sin\theta)(tan\theta - sin\theta) \\   \\ \\  \implies \sf \: 16( {tan}^{2} \theta -  {sin}^{2}\theta ) \\ \\   \\  \implies \sf \: 16 \left(  \frac{ {sin}^{2}\theta }{ {cos}^{2}\theta   } -  {sin}^{2} \theta \right  )  \\  \\  \\  \implies \sf \: 16 \left( \frac{ {sin}^{2} \theta -  {sin}^{2}\theta . {cos}^{2}\theta }{ {cos}^{2}\theta }  \right) \\  \\  \\  \implies \sf \: 16 \left( \frac{ {sin}^{2}\theta (1 -  {cos}^{2}\theta )}{ {cos}^{2} \theta}  \right) \\  \\  \\  \implies \sf \: 16 \left(  \frac{ {sin}^{2}\theta . {sin}^{2}\theta }{ {cos}^{2}\theta } \right) \\

 \\  \\ \implies \sf \: 16 {sin}^{2}\theta. {tan}^{2}\theta   \:  \:  \:  \:  \:  \:  \:  \:  -  -  - (2) \\  \\

By equation (1) and (2) ,

LHS = RHS

 \\   \boxed{ \sf\{ {m}^{2} -  {n}^{2}   \} ^{2}  = 16mn} \\

Taking root ,

 \\ \\   \boxed{ \sf \:  {m}^{2}  -  {n}^{2}  = 4 \sqrt{mn} } (proved)

Similar questions