Math, asked by renuka291202, 2 months ago

If tanx^{-1} (x-1/x-2) + tanx^{-1} (x+1/x+2) = \pi /4. Find the value of 'x'

Answers

Answered by pavithasathish
3

Answer:

8 this is correct answer

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: {tan}^{ - 1}\dfrac{x - 1}{x - 2} +  {tan}^{ - 1}\dfrac{x + 1}{x + 2}  = \dfrac{\pi}{4}

We know that

\boxed{ \bf{ \:  {tan}^{ - 1}x + {tan}^{ - 1}y = {tan}^{ - 1} \frac{x + y}{1 - xy}, \:  \: provided \: that \: xy  < 1}}

So, using this result we get

\rm :\longmapsto\:{tan}^{ - 1}\bigg(\dfrac{\dfrac{x - 1}{x - 2}  + \dfrac{x + 1}{x + 2} }{1 - \dfrac{x - 1}{x - 2}  \times \dfrac{x + 1}{x + 2} } \bigg)  = \dfrac{\pi}{4}

Provided that,

\red{\rm :\longmapsto\:\dfrac{ {x}^{2} - 1 }{ {x}^{2} - 4 }  < 1}

\rm :\longmapsto\:\dfrac{\dfrac{(x - 1)(x + 2) + (x + 1)(x - 2)}{(x - 2)(x + 2)} }{\dfrac{(x - 2)(x + 2) - (x - 1)(x + 1)}{(x - 2)(x + 2)} }  = tan\dfrac{\pi}{4}

\rm :\longmapsto\:\dfrac{ {x}^{2} + 2x - x - 2 +  {x}^{2}   - x + 2x - 2}{ {x}^{2} - 4 -  {x}^{2}   + 1}  = 1

\rm :\longmapsto\:\dfrac{ {2x}^{2} - 4 }{ - 3}  = 1

\rm :\longmapsto\: {2x}^{2} - 4  =  - 3

\rm :\longmapsto\: {2x}^{2}  =  - 3 + 4

\rm :\longmapsto\: {2x}^{2}  =  1

\rm :\longmapsto\: {x}^{2}  =  \dfrac{1}{2}

\bf\implies \:x =  \:  \pm \: \dfrac{1}{ \sqrt{2} }

Justification :-

\rm :\longmapsto\:\dfrac{ {x}^{2} - 1 }{ {x}^{2} - 4 }  < 1

\rm :\longmapsto\:\dfrac{\dfrac{1}{2}  - 1}{\dfrac{1}{2}  - 4}  < 1

\rm :\longmapsto\:\dfrac{\dfrac{1 - 2}{2}}{\dfrac{1 - 8}{2}}  < 1

\rm :\longmapsto\:\dfrac{ - 1}{ - 7}  < 1

\rm :\longmapsto\:\dfrac{ 1}{ 7}  < 1

Hence, Justified

Additional Information :-

\boxed{ \bf{ \: {tan}^{ - 1}x - {tan}^{ - 1}y = {tan}^{ - 1} \frac{x - y}{1 + xy}}}

\boxed{ \bf{ \: 2{tan}^{ - 1}x = {tan}^{ - 1} \frac{2x}{1 -  {x}^{2} }}}

\boxed{ \bf{ \: 2{tan}^{ - 1}x = {sin}^{ - 1} \frac{2x}{1  +   {x}^{2} }}}

\boxed{ \bf{ \: 2{tan}^{ - 1}x = {cos}^{ - 1} \frac{1 -  {x}^{2} }{1  +   {x}^{2} }}}

\boxed{ \bf{ \: 2 {cos}^{ - 1}x =  {cos}^{ - 1}(2 {x}^{2}  - 1)}}

\boxed{ \bf{ \:  {2sin}^{ - 1}x =  {sin}^{ - 1}(2x \sqrt{1 -  {x}^{2} }}}

\boxed{ \bf{ \:  {2sin}^{ - 1}x =  {cos}^{ - 1}(1 -  {2x}^{2})}}

\boxed{ \bf{ \:  {3cos}^{ - 1}x =  {cos}^{ - 1}( {4x}^{3} - 3x)}}

Similar questions