Math, asked by arshmohf789, 2 months ago

If
x + 1 \x = 5 then the vaule of x {3} + 1 \x {3}

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:  \:  \bull \:  \:  \sf \: x + \dfrac{1}{x}  = 5

\large\underline{\sf{To\:Find - }}

\:  \:  \:  \:  \:  \:  \bull \:  \:  \sf \: {x}^{3}  + \dfrac{1}{ {x}^{3} }

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \sf \:  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x + \dfrac{1}{x}  = 5

On cubing both sides, we get

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{x}  \bigg) }^{3}  =  {(5)}^{3}

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  + 3 \times x \times \dfrac{1}{x} \bigg(x + \dfrac{1}{x}  \bigg)  = 125

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  + 3 \times 5 = 125

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  +15 = 125

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  = 125 - 15

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  = 110

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions