Math, asked by krishn19, 1 year ago

if
 {x }^{2}  + 1 \div  {x}^{2}  = 34
then find the value of
 {x}^{3}   + 1 \div  {x}^{3}

Answers

Answered by Anonymous
1

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34 \\  \\ {(x +  \frac{1}{x})} ^{2}  - 2 \times x +  \frac{1}{x}  = 34 \\  \\  {(x +  \frac{1}{x} }^{2} ) - 2 = 34 \\  \\  {(x +  \frac{1}{x} }^{2} ) = 34 + 2 = 36 \\  \\  \sqrt{ {(x +  \frac{1}{x} }^{2} } ) =  \sqrt{36}  \\  \\ x +  \frac{1}{x}  = 6

Then,

 {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(x  +  \frac{1}{x}) }^{3}  - 3 \times x \times  \frac{1}{x}  \times x +  \frac{1}{x}  \\  \\  {x +  \frac{1}{x} }^{3}  - 3(x +  \frac{1}{x} ) \\  \\  {6}^{3}  - 3(6) \\  \\ 108 - 18 = 90


krishn19: why you have taken 2
Similar questions