Math, asked by Jyosmita, 10 months ago

If
 {x}^{2} + \frac{1}{ {25x}^{2} } = 43/5<br />find the value of:<br />[tex]x + \frac{1}{5x}

Answers

Answered by Anonymous
3

Given \:  \:  \: question \:  \: is \\  \\ x {}^{2}  +  \frac{1}{(25x) {}^{2} }  =  \frac{43}{5}  \\  \\ find \:  \: x +  \frac{1}{5x}  \\  \\ Answer \:  \\  \\ (x +  \frac{1}{5x} ) {}^{2}  - 2(x)( \frac{1}{5x} ) =  \frac{43}{5}  \\  \\ (x +  \frac{1}{5x} ) {}^{2}  -  \frac{2}{5}  =  \frac{43}{5}  \\  \\ (x +  \frac{1}{5x} ) {}^{2}  =  \frac{43}{5}  +  \frac{2}{5}  \\  \\ (x +  \frac{1}{5x} ) {}^{2}  =  \frac{45}{5}  \\  \\ (x +  \frac{1}{5x} ) {}^{2}  = 9 \\  \\ (x +  \frac{1}{5x} )  =  \sqrt{9}  \\  \\ (x +  \frac{1}{5x} ) = 3 \:  \:  \: or \:  \:  \: (x +  \frac{1}{5x} ) =  - 3

Answered by Tomboyish44
9

Answer:

± 3

\\

Step-by-step explanation:

\sf ATQ: \ x^2 + \dfrac{1}{25x^2} = \dfrac{43}{5}\\ \\ \\\sf To \ Find: \ \ x + \dfrac{1}{5x}

\\

\Longrightarrow \sf x +  \dfrac{1}{5x}\\ \\ \\\sf Squaring \ on \ both \ sides,\\ \\ \\\Longrightarrow \sf \left(x + \dfrac{1}{5x}\right)^2\\ \\ \\ \\\boxed{\sf Using \ the \ identity \ (a+b)^2 = a^2 + 2ab + b^2}\\ \\ \\ \\\Longrightarrow \sf \left(x + \dfrac{1}{5x}\right)^2 = x^2 + 2\left(x\right) \left(\dfrac{1}{5x}\right) + \left(\dfrac{1}{5x}\right)^2\\ \\ \\ \\\Longrightarrow \sf \left(x + \dfrac{1}{5x}\right)^2 = x^2 + \dfrac{2}{5} + \dfrac{1}{25x^2}\\ \\ \\ \\

\Longrightarrow \sf \left(x + \dfrac{1}{5x}\right)^2 = x^2 + \dfrac{1}{25x^2} + \dfrac{2}{5}\\ \\ \\ \\\sf Substitute \ x^2 + \dfrac{1}{25x^2} = \dfrac{43}{5} \ above.\\ \\ \\ \\\Longrightarrow \sf \left(x + \dfrac{1}{5x}\right)^2 = \dfrac{43}{5} + \dfrac{2}{5}\\ \\ \\ \\\Longrightarrow \sf \left(x + \dfrac{1}{5x}\right)^2 = \dfrac{43 + 2}{5}\\ \\ \\ \\\Longrightarrow \sf \left(x + \dfrac{1}{5x}\right)^2 = \dfrac{45}{5}\\ \\ \\ \\\Longrightarrow \sf \left(x + \dfrac{1}{5x}\right)^2 = 9\\ \\ \\ \\

\Longrightarrow \sf x + \dfrac{1}{5x} = \sqrt{9}\\ \\ \\ \\\Longrightarrow \sf x + \dfrac{1}{5x} = \pm 3\\ \\ \\

---------------------

\\

\sf Answer: \sf x + \dfrac{1}{5x} = \pm 3

Similar questions