Math, asked by sujithkumar1122, 6 months ago

if x^{2}+\frac{1}{x^{2}}=27 find the value of x-\frac{1}{x}

Answers

Answered by EnchantedBoy
3

\huge\underline\red{Answer:-}

x-\frac{1}{x} = ±5

\huge\underline\green{Given:-}

x^{2}+\frac{1}{x^{2}} = 27

\huge\underline\pink{To \ find:-}

The \ value \ of \ x-\frac{1}{x}

\huge\underline\orange{Step \ by \ step \ explanation:-}

(x-\frac{1}{x})^{2}=x^{2}×x×\frac{1}{x}+\frac{1}{x^{2}}

→(x-\frac{1}{x})^{2}=x^{2}-2+\frac{1}{x^{2}}

→(x-\frac{1}{x})^{2}=x^{2}+\frac{1}{x^{2}}-2

→(x-\frac{1}{x})^{2}=27-2  [x^{2}+\frac{1}{x^{2}}=27(given)]

→(x-\frac{1}{x})^{2}=25

→(x-\frac{1}{x})^{2}=(±5)^{2}

\boxed{x-\frac{1}{x}=±5}

Answered by amritamohanty918
2

Step-by-step explanation:

x-x/1 =5 is your answer Please follow me permanently and take 10 thanks in return

Similar questions