Math, asked by Joydip788, 3 months ago

If  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \:  {x}^{2}  + \frac{1}{ {x}^{2} }  = 3 then find the value of x-1/x ​

Answers

Answered by Anonymous
191

\: \: \: \: \:{\large{\pmb{\sf{\underline{ Here's \:  your \:  required \: solution!! }}}}}\\\\

Here, we are given that :-

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \purple{:\implies  {\:  \:  \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }  = 3}}

According to the question, we are asked to find out the value of :-

 \:  \:  \:  \:  \:  \:  \:  \:   \:  \sf \purple {:\implies  \:  \:  \: x - \dfrac{1}{x}}

⠀⠀⠀ ______________________

We know that :-

\sf:\implies\green {\: {(a + b)}^{2}   -  {(a - b)}^{2}  = 4ab}\\\\

\sf :\implies\:{\bigg(x + \dfrac{1}{x}  \bigg) }^{2} - {\bigg(x - \dfrac{1}{x}  \bigg) }^{2} = 4 \times x \times \dfrac{1}{x} \\\\

\sf :\implies\: {(3)}^{2}  - {\bigg(x - \dfrac{1}{x}  \bigg) }^{2} = 4\\\\

\sf :\implies\:9 - {\bigg(x - \dfrac{1}{x}  \bigg) }^{2} = 4\\\\

\sf :\implies\:9 - 4 = {\bigg(x - \dfrac{1}{x}  \bigg) }^{2}\\\\

\sf :\implies\:5 = {\bigg(x - \dfrac{1}{x}  \bigg) }^{2}\\\\

\sf:\implies \underline\green {{  \:x - \dfrac{1}{x}  =  \pm \:  \sqrt{5}}}\\\\

Answered by AaryanTilekar
12

Answer:

The above answer is correct

Similar questions