Math, asked by pp88997766, 1 year ago

if
 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 62
then find the value of
x +  \frac{1}{x}

Answers

Answered by Anonymous
17

Answer:

\large\bold\red{\pm8}

Step-by-step explanation:

Given,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 62 \\  \\  =  >  {(x)}^{2}  +  {( \frac{1}{x} )}^{2}  + 2 \times x \times  \frac{1}{x}  = 62  +  2 \\  \\  =  >  {(x +  \frac{1}{x} )}^{2}  = 64 \\  \\  =  >   {(x +  \frac{1}{x} )}^{2}  =  {( \pm8)}^{2}  \\  \\  =  >  \large\bold{ x +  \frac{1}{x}  =  \pm8}

Answered by RvChaudharY50
89

{\large\bf{\mid{\overline{\underline{Given:-}}}\mid}}

  •  {x}^{2} + \frac{1}{ {x}^{2} } = 62

\large\boxed{\underline{\mathcal{\red{Q}\green{u}\pink{e}\orange{s}\blue{ti}\red{on.??}}}}

  • x + \frac{1}{x}

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • (++2ab) = (a+b)²

\Large\underline{\underline{\sf{Solution}:}}

{x}^{2} + \frac{1}{ {x}^{2} } = 62 \\  \\  \textbf{adding \: 2 \: both \: sides \: } \\  \\ \red\leadsto \: {x}^{2} + \frac{1}{ {x}^{2} } \:  + 2 = 62 + 2 \\  \\ \red\leadsto \: {x}^{2} + \frac{1}{ {x}^{2} } \:  + 2 \times x \times  \frac{1}{x}  = 64 \\  \\ \red\leadsto \: (x +  \frac{1}{x} )^{2}  = 64 \\  \\ \red\leadsto \: (x +  \frac{1}{x} ) =  \sqrt{64}  \\  \\ \red\leadsto \:  \red{\large\boxed{\bold{x +  \frac{1}{x}  =  + 8 \: \:  \:  or \:  - 8}}}

\large\underline\textbf{Hope it Helps You.}

Similar questions