Math, asked by destroyerkj004, 10 months ago

If
 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 98
Find the value of
 {x}^{3}  +  \frac{1}{ {x}^{3} }  =

Answers

Answered by Brâiñlynêha
2

\huge\mathbb{SOLUTION:-}

\bold{Given}\begin{cases}\sf{x{}^{2}+\frac{1}{x{}^{2}}=98}\end{cases}

\huge\sf{To\:Find}

\sf x{}^{3}+\frac{1}{x{}^{3}}

Now :-

\bf\underline{\underline{\red{According\:To\: Question:-}}}

  • First find the value of
  • \sf x+\frac{1}{x}

\sf\longmapsto [x+\frac{1}{x}]{}^{2}=x+\frac{1}{x{}^{2}}+2\\ \\ \sf\longmapsto[x+\frac{1}{x}]{}^{2}=98+2\\ \\ \sf\longmapsto [x+\frac{1}{x}]{}^{2}=100\\ \\ \sf\longmapsto x+\frac{1}{x}=\sqrt{100}\\ \\ \sf\implies x+\frac{1}{x}=10

\boxed{\mathfrak{\purple{x+\frac{1}{x}=10}}}

  • Now we have to find the value of \sf x{}^{3}+\frac{1}{x{}^{3}}

\sf\leadsto [x+\frac{1}{x}]{}^{3}=x{}^{3}+\frac{1}{x{}^{3}}+3\times \cancel{x}\times \frac{1}{\cancel{x}}(x+\frac{1}{x})\\ \\ \sf\leadsto [x+\frac{1}{x}]{}^{3}=x{}^{3}+\frac{1}{x{}^{3}}+3(x+\frac{1}{x})

\sf\implies (10){}^{3}=x{}^{3}+\frac{1}{x{}^{3}}+3\times 10\\ \\ \sf\implies 1000=x{}^{3}+\frac{1}{x{}^{3}}+30\\ \\ \sf\implies 1000-30=x{}^{3}+\frac{1}{x{}^{3}}\\ \\ \sf\implies 970=x{}^{3}+\frac{1}{x{}^{3}}

\boxed{\boxed{\mathfrak{\red{x{}^{3}+\frac{1}{x{}^{3}}=970}}}}

#BAL

#answerwithquality

Similar questions