Math, asked by summinee2066, 6 hours ago

If
x = (2 +  \sqrt[]{3)}
find the value of
(x {}^{2}  +  \frac{1}{x {}^{2} } )

Answers

Answered by xSoyaibImtiazAhmedx
0

_________________________

\bold \color{red}{Given,\:\:x = (2 + \sqrt[]{3}) }

 ∴ \:  \: \bold \color{blue}x {}^{2} + \frac{1}{x {}^{2} }

 =  \:  \: \bold \color{blue}(x) {}^{2} +( \frac{1}{x  } )^{2}

 = \bold \color{blue} (x +  \frac{1}{x} )^{2}  - 2 \times x \times  \frac{1}{x}

= \bold \color{blue} (x +  \frac{1}{x} )^{2}  - 2

= \bold \color{blue} (2 +  \sqrt{3} +  \frac{1}{2 +  \sqrt{3} } )^{2}  - 2

= \bold \color{blue} (2 +  \sqrt{3} +  \frac{1}{2 +  \sqrt{3} } )^{2}  - 2

= \bold \color{blue} (2 +  \sqrt{3} +  \frac{(2 -  \sqrt{3}) }{(2 +  \sqrt{3})(2 -  \sqrt{3})  } )^{2}  - 2

= \bold \color{blue} (2 +  \sqrt{3} +  \frac{(2 -  \sqrt{3}) }{ {2}^{2}    -  {( \sqrt{3} )}^{2} } )^{2}  - 2

= \bold \color{blue} (2 +  \sqrt{3} +  \frac{(2 -  \sqrt{3}) }{4 - 3})^{2}  - 2

= \bold \color{blue} (2 +  \sqrt{3} +  \frac{(2 -  \sqrt{3}) }{1})^{2}  - 2

= \bold \color{blue} (2 +  \sqrt{3} +  {2 -  \sqrt{3} }{})^{2}  - 2

= \bold \color{blue} 4^{2}  - 2

= \bold \color{blue} 16  - 2

 =   \boxed{\bold \color{green}14}

∴ The value of (x {}^{2} + \frac{1}{x {}^{2} } ) is 14 .

_________________________

★ Identity used —

   \boxed { \tt{{x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}  - 2xy}}

Similar questions