Math, asked by gitasadvocate, 1 year ago

If x^{2} −1 is a factor of ax^{4}-bx^{3}+cx^{2} +dx+e, then find the value of a + c + e .

Answers

Answered by sargamkashyap
0

\huge\red{brainliest\:plz} ❤️

Attachments:

gitasadvocate: and what is b-d
gitasadvocate: answer has to be in numerals
sargamkashyap: ohh
sargamkashyap: post this question again
sargamkashyap: i will answer
sargamkashyap: plz
sargamkashyap: Putting the value of a + c + e in eqn , we get 

a + b + c + d + e = 0

⇒ a + c + e + b + d = 0

⇒ b + d + b + d = 0 

⇒ 2(b+d) = 0

⇒ b + d = 0 ---- (iii)

comparing equations (ii) and (iii) , we get 

a + c + e = b + d = 0
gitasadvocate: what do u mean by uske baad
Answered by shadowsabers03
1

   

Hey mate!!!

 

If x² - 1 is a factor of p(x) = ax⁴ - bx³ + cx² + dx + e, then 1 and -1 are two zeroes of p(x), because x² - 1 = (x - 1)(x + 1).

So that p(1) = p(-1) = 0.

\Rightarrow\ p(1)=a(1)^4-b(1)^3+c(1)^2+d(1)+e=0 \\ \\ \Rightarrow\ p(1)=a-b+c+d+e=0 \\ \\ \\ \Rightarrow\ a-b+c+d+e=0 \\ \\ \Rightarrow\ a+c+e=b-d\ \ \ \ \ \longrightarrow\ \ \ \ \ (1)

\Rightarrow\ p(-1)=a(-1)^4-b(-1)^3+c(-1)^2+d(-1)+e=0 \\ \\ \Rightarrow\ p(-1)=a(1)-b(-1)+c(1)-d+e=0 \\ \\ \Rightarrow\ p(-1)=a+b+c-d+e=0 \\ \\ \\ \Rightarrow\ a+b+c-d+e=0 \\ \\ \Rightarrow\ a+c+e=d-b\ \ \ \ \ \longrightarrow\ \ \ \ \ (2)

From (1) and (2),

\Rightarrow\ b-d=d-b \\ \\ \Rightarrow\ b+b=d+d \\ \\ \Rightarrow\ 2b=2d \\ \\ \Rightarrow\ b=d \\ \\ \Rightarrow\ b-d=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \boxed{OR}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Rightarrow\ d-b=0 \\ \\ \Rightarrow\ a+c+e=\bold{0}

∴ a + c + e = 0

   

Plz ask me if you have any doubt on my answer.

Thank you...

   


shadowsabers03: Thank you for marking my answer as the brainliest.
Similar questions